

Policy Management for the Web

A workshop held at the
14th International World Wide Web Conference

Tuesday 10 May 2005, Chiba Japan

Lalana Kagal, Tim Finin, and Jim Hendler (Eds.)

Contents

Forward 2

Workshop schedule 3

Call for papers 4

Research papers

Policy Conflict Analysis Using Free Variable Tableaux for Access Control in Web 5
 Services Environments, Hiroaki Kamoda, Masaki Yamaoka, Shigeyuki Matsuda,
Krysia Broda, and Morris Sloman

Methods for Policy Conflict Detection and Resolution in Pervasive Computing 13
Environments, Evi Syukur, Seng Wai Loke, and Peter Stanski

Policy Conformance in the Corporate Blog Space, Robert McArthur, Peter Bruza, 21
and Dawei Song

Expressing WS Policies in OWL, Bijan Parsia, Vladimir Kolovski, and Jim Hendler 29

Policy-based Access Control for Task Computing Using Rei, Ryusuke Masuoka, 37
Mohinder Chorpa, Zhexuan Song, Yannis Labrou, Lalana Kagal, and Tim Finin

Describing the P3P base data schema using OWL, Giles Hogben 44

Position papers

Predicates for Boolean web service policy languages, Anne Anderson 52

Policy Management and Web Services, Greg Pavlik, Tim Gleason, and Kevin Minder 57

Representing Security Policies in Web Information Systems, Felix J. Garcia 61
Clemente, Gregorio Martinez Perez, Juan A. Botia Blaya , and Antonio F.
Gomez Skarmeta

RDF Query for Policy Management, Eric Prud`hommeaux 67

Application Report: An extensible policy editing API for privacy and identity 72
management policies, Giles Hogben

Policy based access control for an RDF store, Pavan Reddivari, Tim Finin, and 78
Anupam Joshi

Policy Management for the Web WWW 2005

10 May 2005 1

Forward

This workshop brings together researchers interested in the role of explicit, machine interpretable
policies to control programs, services and agents on the Web. We believe that such policies will
have a role to play in realizing the full potential of the Web as an open, dynamic, and distributed
``universe of network-accessible information''. Policy management provides the openness, flexi-
bility, and autonomy required to regulate this environment as entities can reason over their own
policies and the policies of other entities to decide how to behave. Using policies also allows en-
tities to specify expected behavior of entities they interact with. Entities can also adapt to in-
creasingly complex requirements without the need for substantial changes to the structure or im-
plementation through the use of policies. Policy management includes policy specification, de-
ployment, and reasoning over policies, updating and maintaining policies, and enforcement.

The workshop could not have happened without the participation of the program committee.
They reviewed the submitted papers, selected those for including in the proceedings and presen-
tation at the workshop, and provided the authors with helpful advice and comments. We thank
the committee for their generous contributions.

The program committee included Anne Anderson (Sun Microsystems), Vijay Atluri (Rutgers
University), Elisa Bertino (Purdue University), Jeffrey M. Bradshaw (Institute for Human and
Machine Cognition), Dan Connolly (World Wide Web Consortium), Naranker Dulay (Imperial
College), Tim Finin (University of Maryland Baltimore County), Jim Hendler (University of
Maryland College Park), Maryann Hondo (IBM), Benjamin Grosof (Massachusetts Institute of
Technology), Anupam Joshi (University of Maryland Baltimore County), Lalana Kagal (Massa-
chusetts Institute of Technology), Jonathan Moffett (University of York), Wolfgang Nejdl (L3S
Research Center and University of Hannover), Bijan Parsia (University of Maryland College
Park), Filip Perich (Cougaar Software), Stefan Poslad (Queen Mary University of London), Eric
Prud'hommeaux (World Wide Web Consortium), Norman Sadeh (Carnegie Mellon University),
Kent Seamons (Brigham Young University), Marek Sergot (Imperial College), Akhil Sahai
(Hewlett Packard Laboratories), Katia Sycara (Carnegie Mellon University), Dinesh Verma
(IBM TJ Watson Research Center), William Winsborough (George Mason University), and
Marianne Winslett (University of Illinois, Urbana-Champaign).

Policy Management for the Web WWW 2005

10 May 2005 2

Workshop schedule

 9:00 Welcome, Jim Hendler

 9:15 Transparency vs. Privacy, Daniel Weitzner (W3C)

10:30 Break

11:00 Session One : Conflicts and Conformance

• Policy Conflict Analysis Using Free Variable Tableaux for Access Control in Web Services Envi-
ronments (20 min), Hiroaki Kamoda, Masaki Yamaoka, Shigeyuki Matsuda, Krysia Broda, and
Morris Sloman

• Methods for Policy Conflict Detection and Resolution in Pervasive Computing Environ-
ments 20 min), Evi Syukur, Seng Wai Loke, Peter Stanski

• Policy Conformance in the Corporate Blog Space (20 min), Robert McArthur, Peter Bruza, and
Dawei Song

• Discussion (30 min)

12:30 Lunch

14:00 Session Two : Web Services and Policy Management

• Expressing WS Policies in OWL (20 min), Bijan Parsia, Vladimir Kolovski, and Jim Hendler
• Predicates for Boolean web service policy languages (10 min), Anne Anderson
• Policy-based Access Control for Task Computing Using Rei (20 min), Ryusuke Masuoka, Mo-

hinder Chorpa, Zhexuan Song, Yannis Labrou, Lalana Kagal, and Tim Finin
• Describing the P3P base data schema using OWL Services (10 min), Greg Pavlik, Tim

Gleason, and Kevin Minder
• Discussion (30 min)

15:30 Break

16:00 Session Three : Policy Representation

• Representing Security Policies in Web Information Systems, (10 min), Felix Garcia
Clemente, Gregorio Martinez Perez, Juan Botia Blaya , and Antonio Gomez Skarmeta

• Describing the P3P base data schema using OWL (20 min), Giles Hogben
• RDF Query Requirements for Policy Management (20 min), Eric Prud`hommeaux
• Application Report: An extensible policy editing API for privacy and identity manage-

ment policies (20 min), Giles Hogben
• Policy based access control for an RDF store (10 min), Pavan Reddivari, Tim Finin, and

Anupam Joshi
• Discussion (25 min)

17:30 Discussion for a white paper to sum up results of the workshop, closing remarks

Policy Management for the Web WWW 2005

10 May 2005 3

Chairs

Tim Finin, UMBC
Jim Hendler, UMCP
Lalana Kagal, MIT

Program Committee

Anne Anderson, Sun
Vijay Atluri, Rutgers University
Elisa Bertino, Purdue University
Jeffrey M. Bradshaw, IHMC
Dan Connolly, W3C
Naranker Dulay, Imperial College
Tim Finin, UMBC
Benjamin Grosof, MIT Sloan
Jim Hendler, UMCP
Maryann Hondo, IBM
Anupam Joshi, UMBC
Lalana Kagal, MIT CSAIL
Jonathan Moffett, University of York
Wolfgang Nejdl, L3S , U. Hannover
Bijan Parsia, UMCP
Filip Perich, Cougaar Software
Stefan Poslad, Queen Mary Univer-
sity of London
Eric Prud'hommeaux, W3C
Norman Sadeh, CMU
Kent Seamons, BYU
Marek Sergot, Imperial College
Akhil Sahai, HP labs
Katia Sycara, CMU
Dinesh Verman, IBM TJ Watson
William Winsborough, GMU
Marianne Winslett, UIUC

Invited Talks

Daniel Weitzner of the W3C will
give an invited talk on transparency
and policy.

Policy Management for the Web

A Workshop to be held at the
14th International World Wide Web Conference

Tuesday 10 May 2005, Chiba Japan
In order to realize the full potential of the World Wide Web as an open, dynamic, and distributed
``universe of network-accessible information'', it is important for web entities to behave appro-
priately. Policy management provides the openness, flexibility, and autonomy required to regu-
late this environment as entities can reason over their own policies and the policies of other enti-
ties to decide how to behave. Using policies also allows entities to specify expected behavior of
entities they interact with. Entities can also adapt to increasingly complex requirements without
the need for substantial changes to the structure or implementation through the use of policies.
Policy management includes policy specification, deployment, reasoning over policies, updating
and maintaining policies, and enforcement. We propose that policy management is required for
the web for (i) constraining different kinds of behavior including security, privacy, conversation,
and collaboration, (ii) configuration management, (iii) describing business processes, and (iv)
establishing trust and reputation. Relevant topics include the following:

• Policy specification, implementation, and enforcement
• Dynamic merging of policies
• Static and dynamic conflict resolution
• Dynamic policy modification
• Formal models for policy verification
• Relationship of trust and reputation to policies
• Business contracts and rules
• Case studies for policy management
• Applicability of XML, RDF and OWL for policy specification
• Obligation management
• Policies for access control, privacy, and collaboration
• Decidability and tractability issues
• Digital Rights Management policies
• Policy engineering
• Enhancing P3P with policies
• User-oriented policy authoring systems

Format and venue. PM4W will be a one day workshop consisting of invited talk(s), presenta-
tions of submitted papers, and (probably) a panel as well as time for discussion. The workshop
will be held as part of WWW2005 in Chiba, Japan at Nippon Convention Center (or better
known as Makuhari Messe). Makuhari Messe is conveniently located halfway between central
Tokyo and the New Tokyo International Airport (Narita Airport).

Submission details. We seek two kinds of papers: research papers that report on the results of
original research and short papers that articulate a position, describe an application or demon-
strate a working language or system. Both research papers and short papers will be included in
the workshop proceedings. Research papers should describe original research not published
elsewhere and should not exceed eight pages in length. Short papers are expected to be four to six
pages. Short position papers should provide insight into the requirements for, or challenges of,
developing or applying policies for web-based information systems. Short application papers
should describe an implemented novel use of policies in a web-based environment. Short demon-
stration papers should document a implemented system or language that uses policies. Each sub-
mission should indicate the type of paper being submitted: research, position, application or
demonstration. See the web site for additional information on format requirements.

Deadlines. Papers must be submitted electronically by 1 February 2005. Decisions will be an-
nounced on 15 March and final camera ready copy must be submitted by 15 April.

http://cs.umbc.edu/pm4w/

Policy Management for the Web WWW 2005

10 May 2005 4

Policy Conflict Analysis Using Free Variable Tableaux
for Access Control in Web Services Environments

Hiroaki Kamoda
NTT DATA CORPORATION

Tokyo, Japan

kamodah@nttdata.co.jp

Masaki Yamaoka
NTT DATA CORPORATION

Tokyo, Japan

yamaokam@nttdata.co.jp

Shigeyuki Matsuda
NTT DATA CORPORATION

Tokyo, Japan

matsudasg@nttdata.co.jp

Krysia Broda
Imperial College London, UK

k.broda@imperial.ac.uk

Morris Sloman
Imperial College London, UK

m.sloman@imperial.ac.uk

ABSTRACT

Web Services technologies are now an active research area. By in-

tegrating individual existing web systems the technology enables

the provision of advanced and sophisticated services, such as al-

lowing users to use different types of resources and services simul-

taneously in a simple procedure. However the management and

maintenance of a large number of Web Services is not easy and,

in particular, needs appropriate authorization policies to be defined

so as to realize reliable and secure Web Services. The required au-

thorization policies can be quite complex, resulting in unintended

conflicts, which could result in information leaks or prevent access

to information needed. This paper proposes an approach using free

variable tableaux for detecting conflicts resulting from the combi-

nation of various kinds of authorization and constraint policies used

in Web Services environments. The method not only enables static

detection of policy conflicts such as modality and static constraint

conflicts but also yields information that is helpful for correcting

the policies.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—

Formal methods, Validation; D.4.6 [Operating Systems]: Security

and Protection—Access controls, Verification

General Terms

Algorithms, Theory, Verification

Keywords

Access Control, Policy Analysis, Conflict Detection, Free Variable

Tableaux, Abduction

1. INTRODUCTION
The recent spread of broadband technology such as DSL and

FTTH has led to a rapid increase in the number of Internet users

across the world. One of the key technologies is the use of Web

systems, often based on the use of HTTP, and although having

been in use for many years, it is still one of the most used tech-

nologies. In particular, ways of integrating individual web sys-

tems to provide advanced services have been suggested (e.g. [21,

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

27]). Web Services are constructed by statically or dynamically

integrating independent web systems using a set of XML stan-

dards such as SOAP[26], Universal Description, Discovery and

Integration (UDDI)[24] and Web Services Description Language

(WSDL)[25]. This enables advanced and sophisticated services to

be provided enabling users to perform several procedures simulta-

neously, resulting in a better overall service.

In order to realize reliable and secure Web Services it is impor-

tant to authenticate and authorize the users appropriately. For in-

stance, to prevent problems such as an information leak, suitable

access control is needed for the users who access the resources

through Web Services. By using the standard policy description

languages such as WS-Policy[5], WSPL[1] and XACML[17], it is

possible to realize complicated access control for Web Services.

However, the overall structure of these policies can become very

complex, reflecting the complexity of the web services and roles

involved. There is an increased risk that an administrator mistak-

enly defines conflicting policies which, if the wrong choice is made,

result in information leak or prevent access to critical information

in an emergency situation.

We have already proposed a static method for detecting policy

conflicts arising in the On Demand VPN Framework[14]. The

method is based on free variable tableaux and has the advantage

that it gives helpful information for resolving conflicts. In this pa-

per we extend the method beyond simple authorization policies to

cope with various kinds of constraints on policies.

The paper is organized as follows: Section 2 introduces the Web

Services model for policy analysis, Section 3 presents an outline

of conflict detection using free variable tableaux and in Section 4

we illustrate the method to detect and abduce conflicting policies

through examples. In Section 5 we describe some related work,

and our conclusions and future work are presented in Section 6.

2. WEB SERVICES MODEL AND POLICY
There are many types of use case models for Web Services[11]

and in this paper, we assume the “aggregation Web Services model”,

in which a single server manages several Web Services accessed by

multiple users. This model is mainly used for services such as por-

tal site, market place and one stop services. The features of the

model and policies used in it are described in this section. The

particular Web Services model used in this paper is shown in Fig.1.

2.1 Web Services Model
The main entities of the Web Services model used here are re-

Policy Management for the Web WWW 2005

10 May 2005 5

��������� ��	�
���	����
�� ���������
������
����������
����������

Figure 1: Aggregation Web Services Model������� !"#$��%�&'�(��)�&#*+ ��,��!�-*./0 ��1��!�-*./00��2�3.'"4*/0 �56�7��++!7��$#+!7�5)�8'8$#+!7�52�$#+!7�5%�$'-!*�5��9#� !$*(!�
:;<=>?@ABCDEFA=CG>BC>GA :?<H;GIACDEFA=CG>BC>GA�5,��7 !'"$'-!* �51�7��++!7��$'-!*��J�3.'"4*/00

Figure 2: Examples of Role Structures

quester, management server, Web Services and their resources. A

management server integrates several Web Services and provides a

common services interface for users. A requester sends a request

to the management server to use the resources or services provided

by the Web Services. A management server checks the request by

using the access control policy to see whether it should be granted

or not. If it is granted, then the request is transferred to appropriate

Web Services to answer the request. The most popular use case

of this model is travel agency service example[11]. By using the

management server, there is an advantage that requesters can use

any Web Services in a similar way.

We assume the authorization policies needed for checking the

request are defined in terms of subject and target role structures[4,

18]. Policies can propagate up or down the role structures. Further-

more, an authorization policy may be defined in terms of composite

actions, which can result in conflicts if separate policies are defined

for the various sub-actions. We also assume that we can define obli-

gation policy and kinds of constraint policy, including the Chinese

wall policy, separation of duty policy and time constraint policies.

These policies are all explained below.

2.2 Features of the Policy
In this section policies that can be defined in the management

server are presented.

2.2.1 Roles

Policies are defined by using a role, which is a named collec-

tion of privileges[9]. A partial order relation is defined among

these roles and the graph representation of the relation is called a

role structure. Individual requesters and resources take on assigned

roles. In particular, the role structure corresponding to requesters is

called a subject role structure (SRS) and that corresponding to re-

sources or services of Web Services is called a target role structure

(TRS). Examples of these role structures are shown in Fig.2.

2.2.2 Authorization Policy

The most basic policy defined in the management server is an

authorization policy. There are both positive and negative autho-

rization policies. Examples are:

Policy r1 : Auth+(Bronze I, movie, play)
Policy r2 : Auth−(Gold, movie, play)

These policies define authorizations between a requester and Web

Services that provide multimedia contents. Policy r1 specifies that

the subject role Bronze I is allowed to perform the action play

on the target role movie and Policy r2 specifies that the subject

role Gold is forbidden to perform the action play on the target

role movie. The policies r1 and r2, appear to define authorizations

for different subject roles so there should be no problems. However,

if these policies are compared with respect to the role structure,

then a conflict occurs, which is explained in the next section.

2.2.3 Propagation Policy

The role structures potentially simplify policy specification by

allowing propagation policies. In general, if a certain subject role

r is allowed to perform a particular action, then roles higher than r
should also be allowed to perform the action. Conversely, if roles

higher than r are not permitted to perform an action, then r should

not be permitted to perform the action. These propagation policies

are specified as follows:

Policy r3 : prop(Auth+,R ∈ SRS, Up)
Policy r4 : prop(Auth−,R ∈ SRS, Down)

Policy r3 specifies that Auth+ policy defined for subject role struc-

ture R propagates upwards through roles. Policy r4 specifies that

Auth- policy defined for subject role structure R propagates down-

ward through roles. More concretely, let the role structure shown

in Fig.2(a) be R, then Policies r3 and r4 implicitly define the fol-

lowing policies from Policies r1 and r2.

r1 1 : Auth+(Silver I, movie, play)
r1 2 : Auth+(Gold, movie, play)
r1 3 : Auth+(Platinum, movie, play)
r2 1 : Auth−(Silver I, movie, play)
r2 2 : Auth−(Silver II, movie, play)
r2 3 : Auth−(Bronze I, movie, play)
r2 4 : Auth−(Bronze II, movie, play)
r2 5 : Auth−(Guest, movie, play)

Clearly, Policy r1 2 and Policy 2 3 derived from propagation poli-

cies r3 and r4 respectively conflict with Policy r2 and Policy r1,

since the subject roles named Bronze I and Gold have opposite

permissions. Policy r1 1 and Policy r2 1 also conflict.

Propagation is a convenient and easy way to specify implicit

policies, but it can result in unforeseen conflicts. Note that the con-

cept of the role structure described here is slightly different from

the role hierarchies defined in the standard role based access control

model[9] in that the propagation is explicitly defined by a propaga-

tion policy, rather than being implicit. The direction of the propa-

gation may differ according to the type of policy or the type of role

structures. For example, the system administrator may define the

subject role structure “upside down” in some situations. For exam-

ple, in Fig.2 the administrator may define the Guest user as a top

and Platinum user as a bottom role, in which case polices should

propagate in the opposite directions to those given in Policies r3

and r4. That is, Policy r3 would specify Down and Policy r4 would

specify Up. There also may be a case that only lower role users are

permitted to do something. For example we can imagine the situ-

ation in which the rank of member status is decided by how many

points the member has purchased. In this case members with a role

lower than Gold should be permitted to access the service to pur-

chase the points and a positive authorization would be expected to

propagate down. We can thus define an explicit propagation pol-

icy for each role structure which is more flexible than the implicit

propagation in standard role hierarchies.

Policy Management for the Web WWW 2005

10 May 2005 6

2.2.4 Action Composition Policy

Policies may be defined in terms of more than one action. For

example, consider a reservation system, for which the Web Ser-

vices may provide different types of reservation services. Example

policies are:

Policy r5 : Auth+(Bronze II, TR, rsv travel)
Policy r6 : Auth−(Bronze II, TR, rsv air)
Policy r7 : Auth−(Bronze II, TR, rsv hotel)

rsv travel, rsv air and rsv hotel mean, respectively, to

send a request for some holiday abroad, to reserve an airline ticket

and to reserve a hotel, and TR indicates a certain Web Service that

provides travel reservation services. At first sight, comparing the

three policies r5, r6 and r7, no problems are detected. However,

rsv travel is, in fact, a composite action, defined as the follow-

ing action composition policy:

Policy r8 : rsv travel = rsv air ∧ rsv hotel

This specifies that two actions rsv air and rsv hotel are needed

to complete the request rsv travel. This means that to per-

form an overseas holiday reservation process the requester must be

granted to reserve both an airline ticket and hotel accommodation

through the Web Services. Then r5, r6 and r7 become conflicting

policies, as policy r5 specifies that Bronze II is allowed to per-

form an rsv travel action, while the other two policies specify

that both the actions rsv air and rsv hotel are prohibited. In

this way an action composition may also lead to policy conflicts.

2.2.5 Obligation Policy

In addition to the authorization policy described in Section 2.2.2,

an obligation policy[8] can be defined. Example policies are:

Policy r9 : Obli+(Play, Guest, fillout, questionnaire)
Policy r10 : Obli−(Sunday, Guest, login, WS)

Policy r9 specifies that Guest member must fill out the question-

naire after playing the multimedia contents. Policy r10 specifies

that Guest member must not login to the Web Services named WS

on Sunday.

2.2.6 Chinese Wall and Separation of Duty Policy

A Chinese wall policy[6] and separation of duty policy[7] de-

fines the constraints for target roles and actions respectively. Note

that the original use for the separation of duty policy was to pre-

vent an occurrence of fraud; however, in this paper separation of

duty simply means a constraint for any actions. Here we consider

examples such as online banking and auction Web Services, for

which example policies are:

Policy r11 : CW(Guest, {Bank A, Bank B}, view account)
Policy r12 : SoD(Bronze I, Auction, {sell, buy})

Policy r11 specifies that subject role named Guest is permitted to

view accounts of exactly one of the target roles Bank A or Bank B.

Policy r12 specifies that subject role named Bronze I of auction

Web Services is permitted to either sell or to buy something through

the Web Services, but not both buy and sell simultaneously.

These constraint policies may also lead to other types of pol-

icy conflict. For example, the following two positive authorization

policies r13 and r14 conflict with Policy r11.

Policy r13 : Auth+(Guest, Bank A, view account)
Policy r14 : Auth+(Guest, Bank B, view account)

The conflict arises because these policies allow the subject role

named Guest to view accounts of both target roles named Bank A

and Bank B. A similar situation can be happen when defining a

separation of duty policy.

2.2.7 Time Constraint Policy

A time constraint policy can be used to specify the period during

which an authorization policy is valid. This constraint is defined

in each authorization policy. Here is a multimedia Web Services

example:

Policy r15 : Auth+(Gold, movie, play, [00 :00, 24 :00])
Policy r16 : Auth−(Guest, music, play, [09 :00, 17 :00])

Policy r15 specifies that subject role named Gold can play a movie

for 24 hours (i.e. at any time). Policy r16 specifies that subject

role named Guest cannot play music between 9:00 to 17:00. A

time constraint policy itself doesn’t cause a policy conflict. Policy

conflicts can happen only if the time periods specified in various

policies overlap. An example is given in subsection 4.3.3.

2.3 Policy Conflict
As described in Section 2.2, conflicting policies can result from

propagation, action composition and other constraint policies, which

cannot be detected by simply comparing authorization policies. We

call this type of conflict implicit conflict. The problem is that as role

structures and the action compositions become more complex, so it

becomes more difficult to detect an implicit conflict. In some ap-

plications runtime conflict detection methods are not suitable. For

example, the information exchanged in medical applications usu-

ally contains very sensitive data. Information leak caused by an

incorrect policy should never be allowed and contrarily in a med-

ical emergency prevention of access to information resulting from

an undetected conflict could have life-threatening consequences.

Therefore we need a method that can analyze policies statically

before activating a system, in order to detect presence of conflicts,

and to provide information to resolve any conflicts detected. In the

rest of this paper we present our approach, which is based on free

variable tableaux, to satisfy these demands.

3. FREE VARIABLE TABLEAUX
In this section we describe an outline of the conflict detection

method based on free variable tableaux[10].

It is possible to enumerate all policies derived implicitly by prop-

agation and action composition policies and then to detect an im-

plicit conflict by comparing the original and derived policies. How-

ever, this would be computationally expensive and it is still hard to

identify the original policies that cause any conflict. The Free Vari-

able Tableaux method allows faster detection of a conflict and also

infers the cause of the conflict.

Detection of a conflict effectively requires that a contradiction

⊥ be derived from a collection of policies P . To prove that C
results from Γ (i.e. Γ |= C) is equivalent to showing that the set

{Γ, ¬C} is inconsistent (i.e. {Γ,¬C} |=⊥). The method of free

variable tableaux (FVT) can be used to show inconsistency. The

FVT method is a sound and complete theorem prover upon which

can be built simple abductive reasoning. Moreover, it has optimized

implementations. The following two steps are needed to detect a

conflict using FVT:

i) each policy is translated into a logical sentence

ii) the FVT method is applied to these sentences to detect any

possible conflicts, by detecting inconsistency, and to obtain

the information that shows the cause of the conflict.

Policy Management for the Web WWW 2005

10 May 2005 7

In other words, all we have to do is to define the following trans-

lation mapping ζ from policies to logical sentences, such that con-

flicting policies become inconsistent sentences in logic.

ζ : P → L

∈ ∈

r 7→ ζ(r)

where P is a set of policies and L is a set of sentences. Once poli-

cies have been translated into logic, a conflicting policy is detected

in the same way independent of the language to define the policies,

so our approach can easily be applied to various different policy

definition languages.

4. FORMALIZATION OF POLICIES
In this section the definition of ζ for some policies is presented.

4.1 Authorization and Obligation Policy
The two most basic policies are an authorization policy and an

obligation policy. We first present these policy definitions and their

formalizations.

4.1.1 Authorization Policy

An authorization policy (Auth+) defines the action A1 that a

subject role S1 is permitted to perform on a target role T1. A nega-

tive authorization policy (Auth-) defines the action A1 that a sub-

ject role S1 is forbidden to perform on a target role T1. These are

represented by

Auth±(S1, T1, A1).

4.1.2 Obligation Policy

An obligation policy (Obli+) defines the action A1 that a sub-

ject role S1 must perform on a target role T1 when an event E1

occurs. A negative obligation policy (Obli-) defines the action

A1 that a subject role S1 must not perform on a target role T1 when

an event E1 occurs. These are represented by

Obli±(E1, S1, T1, A1).

4.1.3 Formalization

The translation mapping ζ of authorization policies and obliga-

tion policies is defined as follows.

ζ(Auth+(S1, T1, A1)) :=∀x(Ex → P (S1, T1, A1))
ζ(Auth−(S1, T1, A1)) :=∀x(Ex → ¬P (S1, T1, A1))

ζ(Obli+(E1, S1, T1, A1)):=E1 → O(S1, T1, A1)
ζ(Obli−(E1, S1, T1, A1)):=E1 → R(S1, T1, A1)

In the above translations, the predicate P can be read as “subject

role S1 is permitted to carry out action A1 on target role T1” and

predicate O as “subject role S1 must carry out action A1 on target

role T1” and R as “subject role S1 must not carry out action A1 on

target role T1”. The atom Ex says that event x occurs. Then, for

example, the second and third translations can be read, respectively,

as “for any event Ex, S1 is forbidden to carry out A1 on T1” and

“if event E1 occurs then S1 must carry out action A1 on target role

T1”.

Finally, there needs to be two axioms that relate P , O and R i.e.

an obligation policy requires an authorization policy to permit the

action and it contradicts a negative obligation policy:

Ax1 : ∀s, t, a(O(s, t, a) → P (s, t, a))
Ax2 : ∀s, t, a(¬(O(s, t, a) ∧ R(s, t, a)))

Ax1 is used to detect conflicts involving both authorization and

obligation policies and Ax2 is used to detect conflicts between pos-

itive and negative obligation policies.

4.2 Propagation and Action Composition Pol­
icy

4.2.1 Propagation Policy

As shown in Section 2.2.3, an authorization policy is defined by

using a role that has a partial order relation and a propagation policy

defines how an authorization policy propagates in accordance with

the partial order. The syntax of the propagation policy is as follows.

prop(Auth+|−, SRS|TRS, Up|Down)

SRS and TRS stand, respectively, for the subject and target role

structures to which the propagation policy is applied. Up and Down

define the direction of the propagation, where Up means that the

policy propagates upward through the partial order from the least

element, and Down means that the policy propagates downward

from the greatest element.

The syntax of the propagation policy allows the following eight

types of propagation policies to be defined.

prop1 : prop(Auth+,R ∈ SRS, UP)
prop2 : prop(Auth−,R ∈ SRS, Down)
prop3 : prop(Auth+,R ∈ SRS, Down)
prop4 : prop(Auth−,R ∈ SRS, UP)
prop5 : prop(Auth+,R ∈ TRS, UP)
prop6 : prop(Auth−,R ∈ TRS, Down)
prop7 : prop(Auth+,R ∈ TRS, Down)
prop8 : prop(Auth−,R ∈ TRS, UP)

More than one propagation policy or no propagation policy can be

defined as required. These eight propagation policies are translated

into the following four sentences.

ζ(prop1) = ζ(prop2) :=
∀x, y, z, a(P (x, y, a) ∧ HR(z, x) → P (z, y, a))

ζ(prop3) = ζ(prop4) :=
∀x, y, z, a(P (x, y, a) ∧ HR(x, z) → P (z, y, a))

ζ(prop5) = ζ(prop6) :=
∀x, y, z, a(P (x, y, a) ∧ HR(y, z) → P (x, z, a))

ζ(prop7) = ζ(prop8) :=
∀x, y, z, a(P (x, y, a) ∧ HR(z, y) → P (x, z, a))

where HR(i, j) is a predicate stating that i ∈ R is a “senior” role

of j ∈ R (i.e. i is greater than j in the partial order of R). If you

use the fact that (A ∧ B) → C is equivalent to (¬C ∧ B) → ¬A,

you can easily prove that, for example, prop1 and prop2 policies are

translated into the same sentence and similarly for the other cases

shown above.

4.2.2 Action Composition Policy

An action composition policy is a policy that defines the rela-

tionship among actions operated in Web Services. The syntax of

the action composition policy is defined by n actions A1, · · · , An,

A1 = Γ(A2, · · · , An)

where Γ is a Boolean combination of A2, · · · , An. The mapping ζ
for the action composition policy is defined as follows.

ζ(A1 = Γ(A2, · · · , An))
:= ∀x, y(P (x, y, A1)↔Γ(P (x, y,A2), · · · , P (x, y,An)))

Policy Management for the Web WWW 2005

10 May 2005 8

4.3 Other Constraint Policies
In this section we present a definition of the mapping ζ for a

Chinese wall[6], separation of duty[7] and time constraint policy

as examples of other constraint policies. There are two types of

separation of duty - static and dynamic [22], however, we discuss

only static separation of duty and its conflicts in this paper.

4.3.1 Chinese Wall Policy

We specify the syntax of a Chinese wall policy for a set of targets

{T1, T2}.

cw1 : CW(all, {T1, T2}, all)

This Policy cw1 defines two mutually exclusive target roles. Namely,

all subject roles can perform all actions for exactly one of the two

targets {T1, T2}. The mapping ζ of this Chinese wall policy is de-

fined as follows.

ζ(cw1) := ∀x, y¬(P (x, T1, y) ∧ P (x, T2, y))

If a Chinese wall policy must be defined for specific subject role

or action in place of arbitrary ones, one can replace the arbitrary

values x or y in the above formalization by a specific subject role

or action such as S1 or A1.

4.3.2 Separation of Duty Policy

We specify the syntax of a separation of duty policy for a set of

actions {A1, A2}.

sod1 : SoD(all, all, {A1, A2})

This Policy sod1 specifies that two actions are mutually exclu-

sive i.e., all subject roles can perform exactly one of the actions

{A1, A2} for all target roles. The mapping ζ of this separation of

duty is defined as follows.

ζ(sod1) := ∀x, y(¬(P (x, y, A1) ∧ P (x, y,A2)))

If a separation of duty policy must be defined for a specific subject

or target role then replace the arbitrary values x or y in the above

formalization by a specific subject or target role.

Note that more complex variations of the Chinese wall and sep-

aration of duty policies can be easily formalized. For example, a

separation of duty for any finite set of mutually exclusive actions

can be formalized by including additional predicates of the form

P (x, y,Ai) in Policy sod1. However, in this paper, we restrict the

discussion to two mutually exclusive actions for simplicity.

4.3.3 Time Constraint Policy

A time constraint policy defines the time or period during which

a policy becomes valid. In general a temporal logic may be best

suited formalize the time constraint policy. However in this paper,

by keeping to a simple time constraint policy, we present a formal-

ization using first order logic.

Let I1, I2, · · · , In be a set of points that is defined on a time

axis T , where I1 < I2 < · · · < In. A time constraint for an

authorization policy is specified as follows by a period [Ia, Ib], a ≤
b.

Auth±(S1, T1, A1, [Ia, Ib])

An Auth+ policy specifies that during the time period [Ia, Ib] the

subject role S1 is permitted to perform the action A1 on target role

T1. An Auth- policy specifies that during the time period [Ia, Ib] a

subject role S1 is forbidden to perform the action A1 on target role

T1. The translation mapping ζ for these time constraint policies is

defined as follows.

ζ(Auth+(S1, T1, A1, [Ia, Ib]))
:= ∀t(T (t, Ia, Ib) → P (S1, T1, A1, t)), (Ia ≤ Ib)

ζ(Auth−(S1, T1, A1, [Ia, Ib]))
:= ∀t(T (t, Ia, Ib) → ¬P (S1, T1, A1, t)), (Ia ≤ Ib)

where the predicate T (t, Ia, Ib) can be read as a time t is contained

in the time period [Ia, Ib] and P (S1, T1, A1, t) can be read as sub-

ject role S1 is allowed to perform an action A1 on target role T1 at

time t. A positive authorization policy and negative authorization

policy that are defined with a time constraint may lead to a conflict

if their time periods overlap. To detect this type of conflict there

needs to be two additional axioms.

Ax3 : ¬∃x, y(T (t, Ix, Ix+1) ∧ T (t, Iy, Iy+1) ∧ x 6= y))
Ax4 : ∀x < ∀y(T (t, Ix, Iy) ↔

Wy−1

k=x
T (t, Ik, Ik+1))

Ax3 defines that at most one unit time period is always valid. Ax4

defines that T (t, Ix, Iy) can be divided into a set union of unit time

periods T (t, Ix, Ix+1) ∨ T (t, Ix+1, Ix+2) ∨ · · · ∨ T (t, Iy−1, Iy).

5. CONFLICT DETECTION
In this section we show that our approach can detect a conflict

and abduce the cause by using some examples.

5.1 Modality Conflict
Lupu et al. [16] mentioned that the following combinations of

authorization and obligation policies may cause a modality conflict.

{Auth+/Auth−}, {Obli+/Obli−}, {Obli+/Auth−}

By using the mapping ζ defined in Section 4.1.3 and the tableaux

method, every combination of modality conflict can be detected.

As an example, in Fig.3 we show the result of analyzing the pair

Obli+/Auth-and in particular that the following policies conflict.

Policy r17 : Obli+(E1, S1, T1, A1)
Policy r18 : Auth−(S1, T1, A1)

In the FVT, if inconsistent sentences can be made to appear in

the same path, then the path is closed (indicated by a horizontal

line in Fig.3). If all paths are closed, then the given sentences are

conflicting.

A tableaux is developed as a tree, such that every piece of data is

analyzed in every branch of the tree, unless a branch should already

become conflicting. The analysis starts from the premise that the

data are not conflicting and derives a contradiction, namely that all

possibilities resulting from the assumption lead to contradiction. A

datum is analyzed by considering the possible truth values of its

constituents. For example, a sentence of the form A → B is true

either if ¬A is true or if B is true. This leads to two possibilities,

represented in the tableaux by two branches. Basic rules to build

a tableaux are presented in Table 1. A sentence ∀x(Ex → B)
is true for each instance of the variable x. In the FVT method, a

free variable is substituted for x, say x1, to give the free variable

instance Ex1
→ B, which is analyzed as above. That is, it is true

either if ¬Ex1
is true or if B is true. In the first branch of Fig.3, we

can see that if E1 is true the branch will close. Abduction allows

us to assume the occurrence of event E1, which is then available as

an assumption in the other branches. In particular, it allows for the

second branch to be closed, in the case x1 is bound to 1. The third

branch closes by use of Ax1. The final outcome of the analysis

is that if event E1 occurs then there can be a conflict for pairs of

the form Obli+/Auth-. Other types of modality conflicts can be

detected by the FVT method in a similar way.

Policy Management for the Web WWW 2005

10 May 2005 9

Table 1: Tableaux Rules
[∧] [∨] [→] [↔] [¬]

A ∧ B

A

B

A ∨ B

A B

A → B

¬A B

A ↔ B

A

B

¬A

¬B

¬¬A

A

[¬∧] [¬∨] [¬ →] [¬ ↔] [close]

¬(A ∧ B)

¬A ¬B

¬(A ∨ B)

¬A
¬B

¬(A → B)

A
¬B

¬(A ↔ B)

A
¬B

¬A
B

A
¬A
——

close

Policy r17 7→ E1 → O(S1, T1, A1)
Policy r18 7→ ∀x(Ex → ¬P (S1, T1, A1))
Ax1 → ∀s, t, a(O(s, t, a) → P (s, t, a))

¬E1

———

closed

if E1 occurs

O(S1, T1, A1)

¬Ex1

———

x1 = 1

¬P (S1, T1, A1)

¬O(s1, t1, a1)
—————–

s1 = S1

t1 = T1

a1 = A1

P (s1, t1, a1)
——————

Figure 3: Modality Conflict

5.2 Conflict Caused by Propagation
We show that Policies r1 and r2 described in Section 2.2.2 are

conflicting with respect to the propagation policy. Policies r1 and r2

are translated into the following sentences by using the definitions

described in Section 4.1.3 and notations described in Fig.2.

ζ(Policy r1) = ∀x(Ex → P (S5, T2, A1))
ζ(Policy r2) = ∀x(Ex → ¬P (S2, T2, A1))

where A1 stands for play. In this case, as a positive authorization

policy should propagate upwards and a negative one should prop-

agate downwards, we use the following type of propagation policy

formalization.

∀x, y, z, a(P (x, y, a) ∧ HR(z, x) → P (z, y, a))

The result of analyzing policies r1 and r2 using the FVT method

is shown in Fig.4. Since a conflict only happens if an event occurs,

we assume an arbitrary event E1 occurs. To simplify the diagram

some details are omitted, however, all tableaux including latter ex-

amples have been worked through in detail. For example, in the

first branch of Fig.4, if the variables {x1, y1, z1, a1} are given

the values {S5, T2, S3, A1}, then the branch contradicts with the

assumption HR(S3, S5) and Policy r2. From the tableaux we de-

duce that these policies conflict with each other and that the conflict

is caused by the propagation {S2, S3, S5}.

5.3 Conflict Caused by Action Composition
Next we show that Policies r5, r6 and r7 described in Section

2.2.4 become conflicting due to an action composition policy.

First the policies are translated by using the definitions described

in Section 4.1.3:

ζ(Policy r5) = ∀x(Ex → P (S6, T, A2))
ζ(Policy r6) = ∀x(Ex → ¬P (S6, T, A3))
ζ(Policy r7) = ∀x(Ex → ¬P (S6, T, A4))

arbitrary event 7→ E1

subject role structure R 7→ HR(S2, S3), HR(S3, S5), · · ·
Policy r1 7→ ∀x(Ex → P (S5, T2, A1))
Policy r2 7→ ∀x(Ex → ¬P (S2, T2, A1))
propagation policy 7→

∀x, y, z, a(P (x, y, a) ∧ HR(z, x) → P (z, y, a))

¬P (x1, y1, a1) ∨ ¬HR(z1, x1)
————————

x1 = S5

y1 = T2

z1 = S3

a1 = A1

P (z1, y1, a1)
P (S3, T2, A1)

|
|

¬P (x2, y2, a2) ∨ ¬HR(z2, x2)
————————

x2 = S3

y2 = T2

z2 = S2

a2 = A1

P (z2, y2, a2)
P (S2, T2, A1)

———

Figure 4: Conflict Caused by Propagation

arbitrary event 7→ E1

Policy r5 7→ ∀x(Ex → P (S6, T, A2))
Policy r6 7→ ∀x(Ex → ¬P (S6, T, A3))
Policy r7 7→ ∀x(Ex → ¬P (S6, T, A4))
action composition policy 7→

∀x, y(P (x, y, A2)↔P (x, y, A3) ∧ P (x, y, A4))

P (x1, y1, A2)
P (x1, y1, A3)
P (x1, y1, A4)

¬Ex2

——

x2 = 1

¬P (S6, T, A3)
———

x1 = S6

y1 = T

¬P (x1, y1, A2)
¬P (x1, y1, A3) ∨ ¬P (x1, y1, A4)

¬Ex3

——

x3 = 1

P (S6, T, A2)
———

Figure 5: Conflict Caused by Action Composition

where A2, A3, A4 are rsv travel, rsv air and rsv hotel

respectively. Second, the action composition policy given in Sec-

tion 2.2.4,

rsv travel = rsv air ∧ rsv hotel

is translated as follows.

∀x, y(P (x, y,A2)↔P (x, y, A3) ∧ P (x, y,A4))

The result of analyzing these policies using the FVT method is

shown in Fig.5. To simplify the diagram some details are omitted.

We can recognize that these policies conflict with each other since

all branches are contradictory.

5.4 Conflict Caused by Constraint Policy

5.4.1 Conflict Caused by Chinese Wall Policy

In this section we show that the FVT method can also detect a

static conflict of a Chinese wall policy. The following Policies r19,

r20 and cw1 are examples of the conflict.

Policy r19 : Auth+(S1, T1, A1)
Policy r20 : Auth+(S1, T2, A1)
Policy cw1 : CW(all, {T1, T2}, all)

Policy Management for the Web WWW 2005

10 May 2005 10

arbitrary event 7→ E1

Policy r19 7→ ∀x(Ex → P (S1, T1, A1))
Policy r20 7→ ∀x(Ex → P (S1, T2, A1))
Policy cw1 7→ ∀x, y¬(P (x, T1, y) ∧ P (x, T2, y))

¬Ex1

———

x1 = 1

P (S1, T1, A1)

¬Ex2

———

x2 = 1

P (S1, T2, A1)

¬P (x3, T1, y3)
—————–

x3 = S1

y3 = A1

¬P (x3, T2, y3)
—————–

Figure 6: Conflict Caused by Chinese Wall Policy

Policy r21 7→ ∀t(T (t, I1, I3) → P (S, T, A, t))
Policy r22 7→ ∀t(T (t, I2, I4) → ¬P (S, T, A, t))
Ax3 7→ ¬∃x, y(T (t, Ix, Ix+1) ∧ T (t, Iy , Iy+1) ∧ x 6= y))

Ax4 7→ ∀x < ∀y(T (t, Ix, Iy) ↔
Wy−1

k=x
T (t, Ik, Ik+1))

T (t, Iw1
, Iw1+1)

¬T (t, I1, I3)

T (t, Ix1
, Iy1

)
———

x1 = 1
y1 = 3

¬T (t, I1, I2)
¬T (t, I2, I3)

——–

w1 = 1 or 2

P (S, T, A, t)

¬T (t, I2, I4)
|
|

T (t, Ix2
, Iy2

)
———

x2 = 2
y2 = 4

¬T (t, I2, I3)
¬T (t, I3, I4)

——–

w1 = 2 or 3

¬P (S, T, A, t)
———

Figure 7: Conflict Caused by Time Constraint Policy

Policy cw1 specifies that exactly one of the targets T1 or T2 can

be accessed. However, according to the Policy r19 and r20, sub-

ject role S1 can access both targets; that is, these three policies are

conflicting. The result of analyzing these policies using the FVT

method are shown in Fig.6. Again we can recognize that these poli-

cies conflict with each other since all branches are contradictory. A

static conflict of separation of duty policy can also be detected by

the FVT method in a similar way.

5.4.2 Conflict Caused by Time Constraint Policy

As a last example we show that a conflict caused by time con-

straint policy defined in Section 4.3.3 can be detected using the

FVT method. We use the following example Policies r21 and r22.

Policy r21 : Auth+(S, T, A, [I1, I3])
Policy r22 : Auth−(S, T, A, [I2, I4])

These policies conflict with each other because the time periods

[I1, I3] and [I2, I4] are overlapping for the same subject role, target

role and action.

The result of analyzing these policies using the FVT method is

shown in Fig.7. In Fig.7 we assume that an event t occurs in some

time unit [Iw1
, Iw1+1], where w1 is to be determined. To simplify

the diagram some details are omitted. From the result we can not

only detect that these are conflicting but also abduce that the con-

flict occurs during the time period [I2, I3] since we can get w1 = 2
by combining the result w1 = {1, 2} and w1 = {2, 3}. Namely,

to resolve the conflict we need to eliminate the overlapping period

[I2, I3] from the Policies r21 and r22.

6. RELATED WORK
P.C.K.Hung [12] mentions a conflict of interest, which is used

to define a Chinese wall policy, and separation of duties for a Web

Services environment. Also R. Bhatti et al.[4] proposes a policy

description language, called X-RBAC, developed to realize role

based access control in Web Services environment. Moreover, most

policy description languages, for example XACML[17] and Pon-

der[8], can define time constraint policy. However, none of the

methods seem to refer to policy conflict.

There are some static conflict detection methods discussed in the

literature. For example, Ribeiro et al.[20] present a method to de-

tect some inconsistent rules logically and statically, whilst S. Jajo-

dia et al.[13] describe a method which detects conflicts by using

derivation rules. Also M. Strembeck [23] presented a method to

detect a static separation of duty conflict caused by propagation.

However, these approaches do not provide information about the

cause of the conflict.

Several approaches to detect and resolve conflicting policies can

be found. Lupu et al. [16] discuss that conflicts may occur due to

the overlap of the domains to which subjects and objects belong.

A method to resolve the conflict by using priorities based on the

relationship of these domains is proposed. However, their approach

uses an implicit propagation policy defined by the domain structure

and does not deal with composite actions.

Other approaches mention conflicts that occur due to the hierar-

chical structure of the underlying organization and the associated

propagation policies. Several methods to prevent such conflicts

by precedence are proposed. For example, S. Jajodia et al.[13]

propose to resolve conflicts by using default rules such as “deny

override”. In XACML[17], Deny-overrides, Permit-overrides and

First-applicable can be defined as default rules. The novel tech-

nique presented in [3] works by inferring rule priorities based on

the role structure. However, these approaches may not always yield

the result that an administrator really intends; for instance, even in a

single system, the priorities of the various rules may differ depend-

ing on whether the situation is normal or an emergency. Therefore,

before the system starts working, either conflicting rules should be

statically detected and notified together with the reasons to the ad-

ministrator, who should then specify a method to resolve them, or

an application specific precedence policy is required.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented an approach to statically detect a

conflicting policy for an aggregation Web Services environment by

using free variable tableaux, which is a sound and complete theo-

rem prover that can be used to show inconsistency and upon which

can be built abductive reasoning. It is realized by translating each

access control policy into logic. Our method can detect not only

modality conflicts but also constraint conflicts such as propagation,

Chinese wall, time constraint and so on, all in a uniform way. We

have also ensured the usability of the approach by showing how

the conflicting policy can be detected and the conflicting informa-

tion that is very helpful to resolve the policy can be obtained. As

the tableaux method is sound and complete, it is guaranteed that

all conflicting policies can be detected. Moreover, it has the addi-

tional advantage that it can be applied to various policies written in

different policy definition languages.

In the near future, we will try to extend our method into three

directions:

Policy Management for the Web WWW 2005

10 May 2005 11

i) Extension : Our method could be applied not only for poli-

cies introduced in this paper but also for other types of poli-

cies; for example a delegation policy or a devolution pol-

icy may be needed in an e-government environment. We

will consider the formalization of these policies. Moreover,

we are investigating how techniques such as temporal logic

and event calculus [15] could be included into the method to

cope with more complicated time constraints such as cyclical

events.

ii) Evaluation : We will evaluate the computational complexity

of the method and compare it with other similar approaches

for detecting conflict.

iii) Implementation : There are tools named leanTAP [2] or

leanCoP [19], which are implementation of the free variable

tableaux. We will extend this to include abduction and use it

to develop a tool that detects conflicting policies, written in

such as Ponder [8] or XACML [17].

8. ACKNOWLEDGMENTS
We would like to thank Alessandra Russo, Naranker Dulay, Emil

Lupu, Arosha Bandara and Shuichiro Yamamoto for their many

helpful comments and suggestions.

9. REFERENCES
[1] A. H. Anderson. An Introduction to the Web Services Policy

Language (WSPL). In Proceedings of the Fifth IEEE

International Workshop on Policies for Distributed Systems

and Networks (POLICY’04), June 07 - 09, 2004, New York,

USA, pages 189–192. IEEE Computer Society, June 2004.

[2] B. Beckert and J. Posegga. leanTAP : Lean Tableau-based

Deduction. Journal of Automated Reasoning, 15(3):339–358,

1995.

[3] S. Benferhat, R. E. Baida, and F. Cuppens. A

Stratification-based Approach for Handling Conflicts in

Access Control. In SACMAT ’03: Proceedings of the eighth

ACM symposium on Access control models and technologies,

Como, Italy, pages 189–195. ACM Press, June 2003.

[4] R. Bhatti, J. B. D. Joshi, E. Bertino, and A. Ghafoor. Access

Control in Dynamic XML-based Web-Services with

X-RBAC. In Proceedings of the International Conference on

Web Services, ICWS ’03, June 23 - 26, 2003, Las Vegas,

Nevada, USA, pages 243–249. CSREA Press, June 2003.

[5] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy,

A. Nadalin, N. Nagaratnam, M. Nottingham, C. von Riegen,

and J. Shewchuk. Web Services Policy Framework

(WS-Policy) Version 1.01. June 2003. http://www-

106.ibm.com/developerworks/library/specification/ws-polfram/.

[6] D. F. C. Brewer and M. J. Nash. The Chinese Wall Security

Policy. In Proceedings of the IEEE Symposium on Security

and Privacy, May 01 - 03, 1989, Oakland, California, USA,

pages 206–214. IEEE Computer Society, May 1989.

[7] D. D. Clark and D. R. Wilson. A Comparison of Commercial

and Military Computer Security Policies . In Proceedings of

the IEEE Symposium on Security and Privacy, California,

USA, pages 184–194. IEEE Computer Society, April 1987.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The

Ponder Policy Specification Language. In Proceedings of the

Policy 2001: Workshop on Policies for Distributed Systems

and Networks, Bristol, U.K., pages 18–39. Springer-Verlag

LNCS 1995, January 2001.

[9] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based

access control. ACM Transactions on Information and

System Security, 4(3):224–274, August 2001.

[10] M. Fitting. First Order Logic and Automated Theorem

Proving. Springer, second edition, 1996.

[11] H. He, H. Haas, and D. Orchard. Web Services Architecture

Usage Scenarios. W3C Working Group Note, February 2004.

http://www.w3.org/TR/2004/NOTE-ws-arch-scenarios-20040211/.

[12] P. C. K. Hung. From Conflict of Interest to Separation of

Duties in WS-Policy for Web Services Matchmaking. In

Proceedings of the 37th Annual Hawaii International

Conference on System Sciences (HICSS’04), Track 3,

January 05 - 08, 2004, Hawaii, page 30066b, January 2004.

[13] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical

Language for Expressing Authorizations. In Proceedings of

the 1997 IEEE Symposium on Security and Privacy, May 04

- 07, 1997, Oakland, California, USA, pages 31–42. IEEE

Computer Society, 1997.

[14] H. Kamoda, A. Hayakawa, M. Yamaoka, S. Matsuda,

K. Broda, and M. Sloman. Policy Conflict Analysis Using

Tableaux for On Demand VPN Framework. Proceedings of

the the First International Workshop on Trust, Security and

Privacy for Ubiquitous Computing (TSPUC 2005),

Taormina, Sicily, Italy, June 2005.

[15] R. A. Kowalski and M. J. Sergot. A Logic-based calculus of

events. New Generation Computing, 4(1):67–95, 1986.

[16] E. C. Lupu and M. Sloman. Conflicts in Policy-Based

Distributed Systems Management. IEEE Transactions on

Software Engineering, 25(6):852–869, November 1999.

[17] OASIS. eXtensible Access Control Markup Language

(XACML) Version 1.1. OASIS Standard, July 2003.

[18] OASIS. Core and Hierarchical Role Based Access Control

(RBAC) profile of XACML, Version 2.0. Committee Draft

01, November 2004. http://www.oasis-open.org/.

[19] J. Otten and W. Bibel. leanCoP: Lean Connection-Based

Theorem Proving. Journal of Symbolic Computation,

Volume 36, pages 139–161. Elsevier Science, 2003.

[20] C. Ribeiro, A. Zúquete, P. Ferreira, and P. Guedes. Security

Policy Consistency. Technical Report, INESC, June 2000.

[21] Y. Sakata, K. Yokoyama, and S. Matsuda. A Method for

Composing Process of Non-deterministic Web Services. In

Proceedings of the IEEE International Conference on Web

Services (ICWS’04), California, USA, pages 436–. IEEE

Computer Society, June 2004.

[22] R. Sandhu. Separation of Duties in Computerized

Information Systems. In Proceedings of the IFIP WG11.3

Workshop on Database Security, U.K., September 1990.

[23] M. Strembeck. Conflict Checking of Separation of Duty

Constraints in RBAC - Implementation Experiences. In

Proceedings of the Conference on Software Engineering

(SE2004), Austria, pages 224–229, February 2004.

[24] UDDI Organization. UDDI Specification. Version 3.0,

Published Specification, 2002. http://www.uddi.org/.

[25] W3C. Web Services Description Language (WSDL) 1.1.

March 2001. http://www.w3.org/TR/wsdl.

[26] W3C. SOAP Version 1.2. June 2003.

http://www.w3.org/TR/soap/.

[27] H. J. Wang, H. K. Cheng, and J. L. Zhao. Web Services

Enabled E-Market Access Control Model. International

Journal of Web Services Research, 1(1):21–40, 2004.

Policy Management for the Web WWW 2005

10 May 2005 12

Methods for Policy Conflict Detection and Resolution in
Pervasive Computing Environments

Evi Syukur
SCSSE, Monash University, Australia

evis@csse.monash.edu.au

Seng Wai Loke
SCSSE, Monash University, Australia
swloke@csse.monash.edu.au

Peter Stanski
Telstra Lab, Australia

peter.stanski@stanski.com

ABSTRACT

Recently, there has been increasing work in using policy in
pervasive systems. Policy is a relatively new field and much work
is still required to explore designs, concepts, and architecture for
using policy in pervasive computing environments. In this paper,
we briefly introduce the concepts and design of a policy based
pervasive system, using Mobile Hanging Services as an example.
The main aim of this paper is to investigate several techniques
that can be used to statically or dynamically detect and resolve
conflicts in pervasive systems. We discuss the conflict detection
and resolution techniques in the system as a case study.

Categories and Subject Descriptors
D.2.11[Software Engineering]:Software Architectures;
H.3.4[Information Storage and Retrieval]:Systems and
Software; K.6.3[Management of Computing and Information
Systems]:Software Management.

General Terms
Design, Performance and Management.

Keywords
Policy, Conflict Detection, Conflict Resolution, Web Services,
Context, Mobile device, and Pervasive System.

1. Introduction and Motivation
Pervasive computing has a broad view of utilizing computing

devices everywhere in the environment and at any time [1]. The
idea is that a mobile or non-mobile user can communicate with
embedded or non-embedded computing devices, which are
invisibly integrated into the environment as soon as s/he steps into
that particular space. To date, we have seen a number of pervasive
computing systems that have been developed and many of them
share similar concepts, although the details of each concept may
be different one from another, depending on the target domain of
the pervasive system. These basic concepts of the pervasive
system are the notions of entities, spaces, services, mobile
devices, workstations and contexts.

Recently, there has been increasing work in designing policy
based pervasive systems. In our case, policy is used to express a
set of rules to govern and control the behaviours of entities in
accessing services in specific contexts. Having the additional
policy mechanisms in pervasive systems would certainly benefit
the user. For example, it allows the users to constrain and control
the behaviors of foreign entities operating in his/her environment,
and it is used for humans to tell a system what task to do
automatically within a certain situation [11]. However, there are
some challenges in developing such a system. One of the main
challenges we focus on in this paper is detecting and resolving
conflicts in an efficient and appropriate manner as they arise in
the context of using policies to control mobile services. Conflicts

often arise as a result of the differences in policy specifications:
e.g., one allows the user to start the service but another prohibits
the user from doing so. From our study, we experienced that in
pervasive systems, the possibility of conflict occurrence is higher
than in other systems (i.e., a distributed system). This is mainly
due to a number of contexts and services used, and the mobility of
entities, in which, the entity can move freely from one
geographical space to another and the entity carries its own rules
on how the service should be executed in the designated place.

Due to a number of possible conflicts that may occur in a
pervasive environment and each of these conflicts may need
different detection and resolution strategies (due to its source of
occurrence), we may require a number of techniques to detect and
resolve the conflict efficiently. The research presented in this
paper attempts to tackle the above issues in our framework for
Mobile Hanging Services (MHS). MHS supports policy
mechanisms by having and publishing policy software
components as Web services. We also propose several techniques
for conflict detection and resolution in our pervasive system. We
then compare these techniques by considering several aspects of
the system such as:
a. System performance - how long it takes to detect or resolve

the conflict. The shorter time it takes to detect or resolve the
conflict, the faster it is to respond to the user’s request
(hence, minimizing the user wait time).

b. Implementation - how easy it is to implement such
techniques.

c. Accuracy - how often we need to update the conflict
detection or resolution result.

d. Does it accommodate all conflicts that may happen in the
future?

The rest of this paper is organised as follows. In section 2, we
give an overview of the policies in our pervasive system
including several possible sources and types of conflicts. In
section 3, we describe several general techniques used for conflict
detection. In section 4, we discuss general strategies used to
resolve the conflict. In section 5, we present a case study: a
campus based mobile services system using policy (a MHS
application). In section 6, we discuss in detail each of the
proposed conflict detection and resolution techniques and
compare them. In section 7, we present related work. In section 8,
we draw overall conclusions and present future work.

2. Background
This section discusses a definition of policy, followed by an
overview of various possible sources of conflicts in pervasive
computing environments.

2.1 Definition of Policy
The purpose of the policy is to constrain the behaviours of entities
in particular contexts and to ensure that their behaviours (actions
performed) are aligned with the rules of the system. A policy
language in a pervasive environment can be enriched by

 Copyright is held by the author/owner(s).
 WWW 2005, May 10--14, 2005, Chiba, Japan.

Policy Management for the Web WWW 2005

10 May 2005 13

supporting various kinds of normative notions [3,12]. Three basic
deontic logic notions that we focus on are:
• Right (R) refers to a permission (positive authorization) that

is given to the entity to execute a specified action on the
service in the particular context.

• Obligation (O) is a duty that the entity must perform in a
given context.

• Prohibition (P) is a negative authorization that does not
allow the entity to perform the action as requested in the
given context.

2.2 Policy Conflict Sources and Types
In the pervasive MHS system, we may assign different policy
specifications to each entity depending on the role that s/he has.
Assigning different policy specifications to each user in the
system is a way to limit and control the user’s behaviours.
However, this could also lead to a conflict as the conflict arises
due to some differences including:

(a) Policy space modality conflict: conflict occurs as the
space (i.e., can be the system space or room space) assigns
different specifications on what an entity can do with the service
i.e., one allows the user to start the service (i.e., a system) and
another prohibits the user from starting the service (i.e., a room)
or a room obligates to start a service and at the same time, the user
is obligated by the system to stop the service.

These differences lead to a potential or actual conflict that
needs to be resolved. In our definition, a potential conflict refers
to a conflict that has not happened yet at the time the system
detects that such a conflict can happen, as the context or condition
for the conflict to occur has not been met. The potential conflict
can be further classified into two different types: possible
potential conflict and definite potential conflict.

The possible potential conflict is a conflict where the
possibility of the occurrence is less than the definite potential
conflict. This conflict may still not happen even in the right user
contexts of location and time. For example, a system allows the
user to “start any service” but the room only allows the user to
“start media player service”. “Any” here means all services which
are available for the user in that context. It includes the media
player service and some other services in the context. The conflict
only occurs if the user starts any service other than the media
player service. The conflict will not occur if the user starts the
media player service. Hence, we categorize this conflict as a
potential conflict with the type possible. The definite potential
conflict, on the other hand, refers to a conflict that will definitely
occur if the user is in the right context. For example, a system
allows the user to “start media player service” but the room
prohibits the user from “starting this service”. Once the user is in
the right context, this definite conflict will become an actual
conflict, as one allows the user and the other prohibits the user.

b) Role conflict: it occurs due to the differences in the
privilege that the entity has. For example, one user (with higher
privilege) can execute more types of services at any time and any
place compared to other users (with lower privilege) who can only
execute certain number of services at certain place and time. In
our system, the level of privilege is determined based on the level
of positions or roles that the user has. As each entity has a
different level of privileges, a user with higher level of role may
override the execution of the shared service that has been started
earlier by a user with lower role. This then leads to a conflict.

c) Entities conflict: it occurs if two or more users have
different policy specifications or intentions of what to perform on
the service that is running on the same shared resource device. For

example, one user wants to start a music service but another user
wants to stop this music service which is currently running on the
same target machine.

3. Policy Conflict Detection
In this section, we briefly describe goals of conflict detection,
followed by several strategies used to detect conflicts in a
pervasive computing environment.

3.1 Goals of Conflict Detection
The primary goal of detecting a conflict is to investigate several
possible sources of conflicts and types that may occur within the
system. Knowing that there is a potential conflict would allow the
system to accommodate the conflict resolution earlier. Hence, by
the time it occurs, the system is ready with the resolution result.
There are also several sub-goals of conflict detection:
a. to group the conflicts based on its type i.e., a possible

potential conflict or a definite potential conflict (see section
2.2). This is useful to decide on when to resolve the conflict.

b. to analyse the probability of the conflict occurrence (i.e.,
normally a possible potential conflict has lower possibility of
occurrence compared to a definite potential conflict).

c. to investigate the best technique for conflict detection based
on the sources and types of the conflict.

d. to predict the number of occurrences of the conflicts; hence,
we can assign the best technique to detect and resolve this
particular conflict.

e. to predict the probability of potential conflicts which will
become actual conflicts. This is useful to decide when to
resolve the conflict. For example, if we can predict that the
potential conflict never happens, the conflict resolution for
this type of conflict may not be necessary.

3.2 Conflict detection strategy
It is imperative to make a clear distinction on when and where

to perform the conflict analysis (conflict detection and resolution),
as it can be computationally intensive, time and resources
consuming. By analyzing several possible sources of conflicts that
may happen in pervasive environments, we propose two different
techniques to detect a conflict.
1. Static conflict detection

Static conflict detection aims to detect all types of potential
conflicts (possible or definite) which clearly could cause conflicts
from the policy specification. This static conflict detection is
performed offline on the client side or on the server side.
Performing the static conflict detection on the client side is less
desirable as it slows down the conflict detection process. This is
due to some constraints i.e., limited resources, power and
processing speed on the mobile device. The only advantage is the
conflict detection result is there on the mobile client side as the
user needs it (hence, it does not have to be transferred to the client
device). On the other hand, performing static conflict detection on
the server side has more advantages compared to the client side
i.e., the server (normally a desktop PC) has larger memory size
and faster processing speed, and so, can detect the conflict faster.
The result can then be pushed onto the mobile client when done.

With static conflict detection, we also need to decide on types
of conflicts that we need to detect i.e., whether we only want to
detect conflicts which are clearly specified in the policy
specification (predicted potential conflict) or we want to detect
some other conflicts which are not conflicts yet from the policy
specification, but they could lead to conflicts if one or more
entities are in the space at the right contexts (unpredicted
potential conflicts). To include all unpredicted potential conflicts

Policy Management for the Web WWW 2005

10 May 2005 14

will certainly speed up the performance in responding to the
user’s requests (as it has detected all possible conflicts). The only
drawback is it may use up a lot of system resources (i.e., memory
and processing speed), as it has to detect the conflict based on all
possible combinations of entities, contexts and services that the
system has. Moreover, some of the conflict detection results may
never be used as the entities may never be in a context as
predicted (hence, the conflict may never occur).

Another issue that needs to be taken into consideration is to
decide on how often the cached detection result needs to be
updated (i.e., if we cache the conflict detection result for future re-
use). The detection results may be outdated as perhaps, there are
more users registering with the system or some users have
modified their policy specifications. To address this issue, several
approaches can be incorporated: (a) frequently (i.e., every 5
minutes), (b) periodically (i.e., every Monday) (c) only when the
system detects that the user has modified the policy specification
or when there is a new user registered with the system.
2. Dynamic conflict detection
Unlike static conflict detection, dynamic conflict detection is
performed at run time by dynamically detecting all unpredicted
potential conflicts between a number of entities in the given
contexts. As dynamic conflict detection is performed some time at
run time, the system needs to decide on when to trigger this
detection module. We propose five different strategies on when to
dynamically detect a conflict.
a. Reactive model
As it is reactive, this dynamic conflict detection is only triggered
when there is an explicit request from users i.e., when the user
clicks on any action name (start, stop, pause, resume, or submit)
from a mobile device to request an action on the service. The
detection is done as soon as the system detects that there is a
request from the user. If there is a request, the system then collects
all the entities’ context information and reactively detects the
conflicts between those entities in the given context.

This technique is best in the situation with only a few requests
from an entity. It takes some time to detect conflicts if there are
many requests from the entities. In addition, the detection is only
limited to the current location, day, and time, which are related to
the requested action and only between the requested user against
all other users in the room (not all users in the system).
b. Proactive model

Proactive conflict detection tends to implicitly and
automatically detect the conflict by sensing the user’s current
context i.e., when the user moves in or out of the room. This
technique is best used in the situation where performance is
paramount. The proactive conflict detection detects all the
potential conflicts that may occur in the given context and may
cache the result for future re-use. The proactive technique is also
considered as pessimistic conflict detection. We are pessimistic
that there will be a conflict between those entities in the room, as
each entity may try to perform different actions for the same
shared service. Hence, the system proactively catches all potential
conflicts that may occur in the given context. In addition, this
technique is considered useful only if the participating entities
(i.e., users) are still in the same context where the conflict is
predicted to happen. If one of these entities has moved to a
different location, the predicted potential conflict may no longer
be an actual conflict (as this type of conflict only occurs if two or
more entities which have different specifications on the same
target service are still in the same space).

Moreover, there are two issues that need to be addressed in
order to increase the accuracy of dynamic conflict detection result:

• What happens if in the middle of process of detecting a
conflict, another user comes in? Will the system continue with the
detection process? If it continues, it then has to re-compute the
result after some time, as it is already outdated.
• What happens if the user has left the space and this user is
already in the conflict detection list result? Do we need to remove
him/her from the list? What happens if s/he comes back to the
space after some time? We need to know when to remove users
from the list. Also, there is a problem, if we keep all the results in
the memory, as the server may be overloaded with outdated
results and perhaps, there is no longer a conflict between users (as
one of the conflicted users is no longer in the space).
c. A combination of reactive and proactive models

A combination of these techniques is useful when we want
the system to act proactively in a certain situation i.e., in an
examination room, a seminar room and in a certain place, it acts
reactively i.e., in the individual room. This is mainly because, at a
public place, there are many users coming in and out of the place,
therefore, it is useful to employ a proactive conflict detection
technique here. At the individual room, usually, only the owner
with some other visitors that may not perform many activities,
hence, we detect the conflict reactively. A decision to choose
whether to perform a proactive or reactive behavior can be based
on: (i) the location i.e., proactive in public place and reactive in
the individual place (i.e., a user’s office). (ii) the day and time
i.e., on Monday at any place, proactively detects the conflict,
because, it may be a busy day and many students come to the
University or at the shopping centre, there may be a lot of visitors
visiting the mall, but, other days, we detect the conflict reactively.
(iii) the number of users in the location. For example, if the
system detects there are more than five users in the location, a
proactive behaviour is used. However, if there are less than five
users, the system then detects the conflict reactively.
d. Predictive model
 Predictive model detects the conflict based on the user’s
history file. By analyzing the user’s history file, the system can
predict the user’s movement and the person that the user is going
to meet. For example, from the history file, user A is always going
to room B and meeting user B on Wednesday at 12PM. Based on
this information, the system may want to compute the conflict
detection proactively between these users (user A and B) at room
B. This technique is considered useful only if the system
prediction is correct (i.e., the user always does the same activity as
listed in the history file). However, if the user’s movement and
activity are not anticipated by the system (i.e., the user is moving
to a different room and meeting different people), there will be a
delay in responding to the user’s request. This is due to the
conflict detection result which has been previously computed is
irrelevant to the user’s current context. Hence, the system will
need to re-detect the conflict based on the user’s current location,
day, time and people that s/he is meeting.

4. Policy Conflict Resolution
When there is a potential or actual conflict detected by a conflict
detection module, it becomes necessary to resolve the conflict.
Several aspects discussed in this section are the goals of the
conflict resolution, when and how to resolve conflicts, as well as
when to update the conflict resolution result.

4.1 Goals of Conflict Resolution
The primary purpose of conflict resolution is to resolve all types
of conflicts in minimum amount of time, and so, minimizes the
user wait time. Several sub-goals of conflict resolution are:

Policy Management for the Web WWW 2005

10 May 2005 15

a. to investigate several techniques on how to resolve the
conflict based on its sources and types.

b. to decide when it is the best time to resolve the potential or
actual conflicts.

c. to monitor whether the conflict resolution result satisfies
both of the conflicted entities. If the conflict resolution result
does not satisfy the conflicted entities, we need to think of
the best solution that will benefit both of these entities i.e.,
allowing the conflicted entities to challenge the system and
resolving the conflict by taking into account the user’s
current situations.

d. to decide on how often the conflict resolution module needs
to be re-computed.

e. to analyse whether the conflict resolution result is useful
(i.e., the conflict resolution result will be used at run time, as
the predicted potential conflict becomes an actual conflict).

4.2 Techniques to resolve the conflict
We propose several conflict resolution techniques to handle
possible conflicts that may occur in pervasive systems. Some
additional resolution techniques or further refinements of each of
the following resolution techniques are required depending on the
target pervasive domain. This paper discusses only the major
conflict resolution techniques which can be used across pervasive
systems that employ and share the basic pervasive concepts as
discussed earlier in introduction. These resolution techniques are
(a) Role hierarchy overrides policy. The role hierarchy overrides
policy is used if the conflict occurs between users who have
different roles, in which a user with a higher role can override the
policy that belongs to the user with a lower level of role. (b)
Space holds precedence over visitor. This technique is used if a
conflict occurs between a user and a room. For example, the
system permits a user to start a service at room A, but room A
prohibits the user from starting this service. If there is a conflict,
the room (representing its owner) always wins, regardless of the
levels of role of the visitor. (c) Obligation holds precedence over
rights. This technique is used if a conflict occurs between an
obligation and the right. An obligation always wins over the right.
For example, a user is permitted by the system to start a media
player service, but a room obligates the user to stop this service.

4.3 When to resolve the conflict
We propose two strategies on when to resolve the conflict in
pervasive computing environments.
a. At the time when a conflict is detected
This is a pessimistic conflict resolution technique. We are
pessimistic that some or all detected potential conflicts will
become actual conflicts. Hence, the system resolves all conflicts
immediately as soon as the system detects them. Depending on the
conflict detection technique that the system employs, with this
technique, the conflict can be resolved offline (i.e., when users are
not in the space yet) or at run time. For example, if we employ a
static conflict detection technique, the conflict resolution of all
potential conflicts is done oflline, as soon as they are detected.
However, if the system employs a dynamic conflict detection (i.e.,
a reactive technique), the conflict resolution is only performed at
run time, as the conflict is only detected at run time.

In addition, with this technique, we can further choose which
conflicts to resolve based on its type such as: (i) Resolve only a
definite potential conflict: The technique here resolves only a
definite potential conflict, as we are sure that it will become an
actual conflict once the entities are in the right contexts for the
conflict to happen and resolve the possible potential conflict only

when the contexts for the conflict to happen are met. This
technique does not anticipate all resolution results. Hence, it may
experience a delay in responding to the user’s request, especially
if the possible potential conflict happens to be an actual conflict at
run time. (ii) Resolve both possible and definite potential
conflicts. The system can also choose to resolve both types of
conflicts as soon as they are detected. These potential conflicts are
solved, though they have not happened yet to be actual conflicts.
This technique would minimize the user wait time, as it has
resolved all predicted conflicts prior to become actual conflicts.
However, if none of the predicted conflicts become actual
conflicts, it may waste the system resources.
b. At the time when the potential conflict becomes an actual

conflict (normally at run time)
This is an optimistic conflict resolution technique. We resolve the
potential conflicts just when they become actual conflicts. We do
not resolve these potential conflicts, just when we detect them, as
we are optimistic that the conflicts that we have detected may or
may not become actual conflicts. This is due to several factors
such as the user may not be in the context where the conflict is
detected to happen or the user does not execute the service in the
specific context (i.e., specific location, day and time) where a
conflict can arise (although, it is clearly a conflict from the policy
specification). For example, the user is allowed by the system to
start a media player service at any day, however, the room only
allows the user to start this service on Monday only. We are
optimistic that the conflict here will not happen, unless the user
starts the service on any other days (other than Monday).

4.4 How often to update the conflict
resolution result

It also would be good to cache the conflict resolution result
for future re-use. The question here again, we need to decide on
how often the cached result needs to be updated. One simple
solution is to update each time the conflict detection module is re-
computed (when the cached conflict detection result is updated).

5. Case Study
This section discusses in detail on how policy specification,
conflict detection and resolution strategies are used in pervasive
computing environments. One sample prototype that we have
developed is a campus based policy system within MHS.

5.1 MHS on Campus
As discussed earlier in introduction, our definition of a pervasive
computing environment consists of entities, spaces, services,
mobile devices, workstations and contexts. The details of each of
these concepts depend on the target pervasive system and its
environment. For example, an entity in a campus domain refers to
a student, a lecturer and a head of school, however, in a shopping
mall domain, it could mean something different i.e., a customer
and a seller. In this section, we mainly focus on the pervasive
concepts and policy specifications in a campus domain. We
describe each of these concepts as follows:
a. Entities. Entities here refer to mobile users which are always
on the move (move from one geographical space to another).
Three types of entities in our system are a student, a lecturer, and
a head of school. By default, our system imposes certain rights
(denoted by sRe), obligations (sOe) and prohibitions (sPe) to each
of these entities depending on the role that the entity has and the
physical space that the entity is visiting. In addition, each of the
entities in the system can also impose a certain obligation to the

Policy Management for the Web WWW 2005

10 May 2005 16

system (eOs), created via a user policy application that we have.
In summary, each of the entities in the system will have:

sRei, sOei, sPei and eiOs
Note: i denotes a specific user i.e., user i.
b. Spaces. Spaces here can be a physical room that is
represented by a geographical location e.g., room B558. The room
entity has its own policy that can be used to restrict the visitors’
behaviors or actions on mobile services in the room. Generally,
the room’s policy is created by the owner of the room. The public
place in our system (e.g., tea room, corridor, or seminar room) is
owned by the system. Hence, the public policy is created by the
system (i.e., a developer/system administrator).
c. Services. A service refers to a software tool that is
enlisted as users need it and it helps users to accomplish the tasks
by downloading the service application or mobile code onto a
target machine (i.e., a mobile device or a desktop PC machine).
We have two types of services in our system: a shared resource
service e.g., Mobile VNC [10] and Mobile Media Player
applications [11], in which the service is downloaded onto a
shared desktop machine and it can be controlled and accessed by
all legitimate users from their mobile devices in that specific
location. A non-shared resource service, on the other hand, is a
service that is downloaded to and compiled in the user’s mobile
device (e.g., a Mobile Pocket Pad Service [9] and is only
accessible by that user).
d. Mobile Devices i.e., handheld devices which display service
interface and can execute service processes.
e. Workstations. It can be a normal desktop PC where services
can be executed (run) or a server that hosts all context-aware and
policy related components.
f. Contexts. Contexts are conditions that must be met before
a list of services can be displayed on the mobile device or before
the user’s request to perform an action is approved. In our work,
contexts consist of a user’s identity, location, day and time.

5.1.1 Architectural Design
Our policy software components handle the user’s request to

perform some actions on the service. The request can be start,
stop, pause and resume the service. This section provides a high
level architecture and description of these parts of our mobile
policy based framework (see Figure 1 below).

Figure 1: High Level Architecture of MHS Policy Framework

The details of each of our context-aware software components
have been discussed in [9]. We now describe each of our policy
software components: (a) Mobile client query manager (on the
mobile client side). It handles the request from the user and sends
this request to the policy manager. (b) Policy manager (on the
server side). Policy manager manages the interaction between the
mobile client and the server, in which the mobile client sends a
request to the policy manager and the policy manager computes
the request and returns the result back to the client. The result is
either allowing or disallowing the mobile user to perform the

action. (c) Policy interpreter (on the server side). The policy
interpreter component specifies a set of rights, prohibitions and
obligations which are useful for the user in the particular contexts.
(d) Policy conflict detection module. The policy conflict
detection detects lists of potential or actual conflicts that may
occur between entities in the system. (e) Policy conflict
resolution module. The policy conflict resolution module handles
conflicts between entities in the system.

5.1.2 Prototype Implementation Details
We present our prototype implementation where we have

implemented some of the conflict detection and resolution
techniques discussed in previous sections. Our MHS system
consists of users with mobile devices who are always on the
move, a web service that determines the user’s current location,
and policy software components which handle a user’s request to
perform an action on a particular service.

As for conflict detection, our system employs a combination
of static and dynamic conflict detections. Static conflict detection
is performed offline on the server side and statically checks the
entity’s policy specification to detect the policy space modality
conflicts (i.e., between a policy specification from a system to the
user and from a room to the user). The policy space modality
conflict may occur here, as the system may permit the user to
“start the service”, but the room prohibits the user.

We also cache this static conflict detection result for future re-
use. When the system detects there is a new user added or there is
a user modified his/her policy, our static conflict detection module
then updates the cached result. Our dynamic conflict detection
further detects the conflict at run time (i.e., a conflict between
users). We only detect conflicts between users at run time, as in
pervasive systems, the user is always on the move and the
movement is unpredictable; hence, we do not know where the
user is going to and whom s/he is meeting. Therefore, it would be
good to detect this type of conflict dynamically at run time (just
when the users are already in the space).

Before further checking for conflicts between users, dynamic
conflict detection first detects the type of the service that a user
would like to perform. If it is a shared resource service, then the
dynamic conflict detection needs to check whether there is a
conflict between one user’s policy against another user’s policy.
Checking between users’ policies are required for shared services
only, as the service is running on the shared machine that allows
any legitimate user to control the execution of the service from
his/her mobile device. If it is a non-shared resource service, the
dynamic conflict detection does not need to further check the
conflict between users as the non-shared resource service does not
involve other users (only between a user and the room). As we
have already detected the conflict between a user and a room
statically, the dynamic conflict detection for the non-shared
service then just reads from the cached detection file.

Once the checking on the type of the service is done, the
dynamic conflict detection then needs to read and process the
cached result to find out whether the user is permitted by the
system to perform the specified action. If so, then it checks
whether the user is permitted to perform the action by the room. If
the user is permitted, the system then continues to perform
dynamic checking whether there is a conflict between users if the
specified action is performed. We use a combination of static and
dynamic conflict detections in order to speed up the conflict
analysis and processing time. Hence, it will reduce the user wait
time. Employing only a single conflict detection strategy i.e., only
a static or dynamic conflict detection would slow down the system

Policy Management for the Web WWW 2005

10 May 2005 17

performance. In addition, our system also resolves all potential
conflicts as soon as they are detected. Resolving the conflict only
when it becomes an actual conflict will result in delay in
responding to the user’s request.

It would be preferably to detect and resolve the conflict
statically (offline). However, due to undiscovered all potential
conflicts at this time, as some of the conflicts may only occur if a
number of entities are in the contexts, run time conflict detection
and resolution are also necessary. However, there is still a
challenge here in deciding on what types of conflicts should be
handled statically or dynamically when considering the aspects of
system resources and performance. For example, detecting and
resolving all conflicts statically can certainly improve the system
performance (as the system has anticipated all potential conflicts
with their resolution results). However, detecting and resolving all
conflicts statically also has a drawback, in which, it may use up a
lot of system resources and may waste the resources, especially if
the predicted conflicts never become actual conflicts (the
detection and resolution results are never used). This area is still
an ongoing work that needs to be further explored in the future.

5.1.3 Performance Results
 The framework has given promising results in obtaining a list
of policies which are useful to the user, detecting and resolving
the conflict both offline and at run time. The evaluation starts
from the Web service call to get a user’s policy up to resolving the
conflict and deciding whether the user is permitted to perform the
action on the specified service. The evaluation aspects of our
system are described in Figure 2 below.

Figure 2: Evaluation aspects

 In our evaluation and testing, results were collected for five
times of requesting the system to execute the same action with the
same service name at the same contexts i.e., a mobile user
requests to start a media player service with a particular song
name on Saturday, between 12-2PM at B558 room. We measure
each of the evaluation aspects above for five times of policy
execution, assuming the number of policies in the location are the
same throughout the execution i.e., two policies exist in the
location – a user’s policy and a room’s policy. There is also one
conflict found between a user and a room, in which a room does
not allow a user to perform such a service on Saturday, between
12-2PM at B558 room.

The evaluation results are illustrated in Figure 3 below. These
figures were obtained on an iPAQ emulator that is running on the
laptop using wireless Wifi network for internet connection. From
Figure 3, we can see that the time required to call the Web
service: send a query from a client to policy manager, retrieve
context information, retrieve relevant and parse policy document,
read from the cached results and send back result to the mobile

client manager decreases for the 2nd, 3rd, 4th, and 5th times of web
service calling. The first call of the Web service takes longer time,
as the system needs to compile and download the local host Web
service proxy object to the device.

Figure 3: Experimental results

The proxy object allows the Web service to be treated like other
.NET classes. The 2nd and subsequent calls to the web service will
have much shorter times as it reuses the service proxy object
already on the local mobile device. The amount of time required
to perform static conflict detection and resolution at compile time
is 3.18s (=1.17+0.48+1.05+0.48). Here, the static conflict
detection component first detects whether the system gives a user
permission to execute the service. If the system permits the user,
we then continue checking with the room’s policy (i.e., whether
the room permits the user to execute the service). Here is the
formula to detect and resolve the conflict statically.
Tstatic conflict analysis(s) =
Tdetect a conflict statically + Tcache the conflict detection result + Tproactively resolve the

conflict + Tcache the conflict resolution result
If there is a permission given by the room, we continue

checking it against other users’ policies or a room’s obligation
(conflict detection at run time). Here, it takes 0.78s to detect a
conflict at run time. We found one conflict between a user and a
room’s obligation. The dynamic conflict detection module here
only checks the conflict against a room’s obligation, as we only
have one user in the location. Checking against a room’s
obligation is necessary because the room also imposes a certain
duty to the user. Hence, we want to ensure that there is no conflict
between the user’s action and the room’s obligation.

This static and dynamic conflict detection results are also
cached on the server for future re-use. The second and subsequent
policy execution of the same action, service and contexts will just
read from the cached file (assuming there is no user moving in or
out of a place). Therefore, the dynamic conflict detection time for
subsequent policy executions here is zero. Having static conflict
detection would help to minimize the user wait time by detecting
all potential conflicts between a user and room offline. Detecting
such conflict at run time would consume lots of time. Hence, it is
recommended to detect it statically, although some of the conflict
detection results may not be useful as some of the users may not
be in the context as predicted.

As we employ a proactive conflict resolution strategy
(resolving conflicts as soon as the system detects them) for both
static and dynamic conflict detection, the system takes shorter
time to resolve some other detected dynamic conflicts at run time.
It takes 0.33s to resolve the dynamic conflict for the first time a
service is called. Our system also caches the dynamic conflict
resolution result on the mobile device. Hence, the second and
subsequent requests of the conflict resolution for the same conflict
that has the same action name, target service and contexts would
just read from the cached file. In addition, the time it takes to

Policy Management for the Web WWW 2005

10 May 2005 18

cache the results (i.e., conflict detection and resolution results) at
run time is 0.38s (for the first time requesting the service). As
there is no conflict occurring for subsequent requests, there is no
result that needs to be cached (0s time to cache results for
subsequent requests). Finally, we present a formula to calculate
the time required to request to perform an action on a shared or
non-shared resource service till the system responds back to the
user. This formula is illustrated as follows:
Tuser wait time(s) =
Tsend a query from a mobile client to a policy manager + Tretrieve context information +
Tretrieve and parse relevant policy documents + Tread conflict results from a cached file (both

detection and resolution) + Tdetect a conflict dynamically (if any) + Tresolve a conflict

dynamically (if any) + Tcache results (if any) + Tsend back result to the mobile client manager
 Based on the formula above, we can conclude that the worst-
case scenario for the user wait time is the first time of requesting
the service, which takes 10.61s (= 0.68 + 3.5 + 2.38 + 1.88+ 0.78
+ 0.33 + 0.38 + 0.68). The 3.5s is the total time to retrieve context
information. It takes 3s to get a user’s current location using
Ekahau location tracking system via a Web service call and 0.5s
to retrieve a user identity, current day, and time. The 3s Ekahau
delay can be eliminated, if we assume the user is still in the same
location (for the first and subsequent requests), and so, the system
does not need to re-detect the user’s current location.

The best case scenario i.e., the minimum time delay to get a
response back from the policy manager is in any execution which
is not the first. In such a case, the delay time is 6.26s (=0.55 +2.5
+ 1.28 +1.38 + 0 + 0 + 0 + 0.55) – assuming the location context
for subsequent requests are still the same. The delay time to detect
subsequent requests decrease to 6.26s, because, the Web service
calls in subsequent requests, re-use the local proxy object, which
has been downloaded and compiled previously and also the
subsequent requests do not require to perform dynamic conflict
detection and resolution (only read from the cached file) as the
conflict is the same as in the first run.

6. Discussion
We observe that each of the proposed conflict detection and
resolution techniques has its own advantages and disadvantages,
such as: 1) Static conflict detection: it accommodates all potential
conflicts that may happen in the future (hence, it will speed up the
performance in responding to the user’s requests), is simple to
develop and relatively easy to maintain. However, this technique
only suits if the number of entities in the system is not too many
and policy specification and number of entities in the system are
relatively static. More entities mean more policy specifications
which mean more policies to compare. Allowing entities to
modify his/her policy specification at run time or having a new
user registered, requires the system to update the static conflict
detection result which has been previously computed. Hence, it
will use up a lot of resources and may be quite tedious, as it has to
re-detect the conflict between all entities in the system. Moreover,
some of the conflict detection results may never be used as the
entities may never be in the context as they are predicted - hence,
the predicted potential conflict never becomes an actual conflict.

2) Reactive based Dynamic Conflict Detection: this technique
takes shorter time to detect all potential conflicts in the given
context as it only checks the conflict between the requester and
number of users in the room. It is also simple to develop and
maintain and suits any situation (i.e., static/dynamic policy
specifications or entities) as the conflict detection is triggered
reactively i.e., when there is a request from a user to perform an
action on the service. The main drawbacks of this technique are
long delays in detecting and resolving the conflict between

entities, as the system only starts to detect and resolve the conflict
when there is a request from the user. Moreover, detecting the
conflict based on the user’s request may not be a good idea as one
user may request (click on the action name) more than once in a
minute i.e., user A clicks on the start button twice and user B
clicks on the stop button three times, hence, the system needs to
execute the conflict detection for five times.

3) Proactive based Dynamic Conflict Detection: this technique
accommodates all potential conflicts in the given context (hence,
reduces the user wait time), use less system resources (memory
and CPU processing) compared to the static conflict detection
technique, as it only detects conflicts between entities which are
in the same context (not all entities in the system). It is also
considered easy to develop and suits for any situation with static
or dynamic policy specifications or entities. However, the system
maintenance can be challenging, as we need to know the best time
to update the conflict detection result (when to proactively detect
a conflict) i.e., when the system detects that there is a new user
moves in or out of the space, frequently every 5 seconds, or when
the system detects there are more than certain number of users in
the space such as more than two users in the room.

4) A combination of Reactive and Proactive based Dynamic
Conflict Detection: this is an ideal technique among all other
conflict detection techniques. It accommodates all potential
conflicts in the given space by using a combination of reactive
and proactive techniques. It can be proactive in some situations
and reactive in others, and so, can further reduce the system
resources (memory and CPU processing). It also suits in any
situation (with static or dynamic policy specification, entities,
services and contexts). This technique is also easy to implement.
The only issue here is we need to decide when and under which
situation a proactive or reactive behaviour should be performed.

5) Predictive based Dynamic Conflict Detection: this
technique is much more complex to develop and maintain and
does not accommodate the user’s unpredictability.

In addition, we found that the potential conflicts which are
detected at run time by using a reactive technique have higher
possibility to become actual conflicts compared to other
techniques (i.e., a proactive or predictive technique). This is
mainly because in reactive technique, the detection is only
performed when there is a request from a user and the detection is
looking for conflicts only for the current day, time and location
(hence, if there is a conflict found, the contexts for the conflict to
occur must have been met). On the other hand, a proactive
technique proactively detects all potential conflicts between users
although the contexts for the conflict to occur have not been met.

Moreover, for conflict resolution, the best technique is to have
a proactive conflict resolution strategy that immediately resolves
the conflicts as soon as the system detects them. This technique
anticipates all potential conflicts that may happen between entities
in the future. Hence, it improves the system performance and
certainly minimizes the user wait time. However, some of the
conflict resolution results may not be useful as some of the
detected potential conflicts may never happen at run time.

7. Related Work
This section provides a brief overview about the research work
that has been done to date that also concentrates on exploring
different strategies used to detect and resolve conflicts in policy
systems. Some earlier policy work in pervasive systems are Rei
[3], Spatial Policies [4] and Policy for Agent Mobility work [8].
In addition, only few work done to date explores different
strategies of policy conflict detection and resolution. A notable

Policy Management for the Web WWW 2005

10 May 2005 19

project is a work done in [5,6,7] that explores different techniques
used for conflict detection and resolution in enterprise and
management policy based systems. Our conflict detection and
resolution techniques to some extent have similar philosophy to
this project. The only difference is the target environment, we
focus on pervasive systems which have services, entities, contexts,
mobile devices, workstations and spaces.

As our system is designed for pervasive computing
environments, in which users are always on the move and often
require immediate response from the system of their requests, the
sources and types of conflicts found in our system are also
different from the one in [5,6,7]. This then leads to some
differences in designing and implementing the conflict detection
and resolution techniques. For example, we have conflicts on
permissions, obligations and prohibitions between mobile users,
as well as between a mobile user and the space. In contrast to
[5,6,7], they do not take into account the mobility of users and the
notions of services, and so, the conflicts found in the system are
mostly between non-mobile users who are trying to access system
or a user’s resources information. In addition, our pervasive
system tends to focus more on the system performance that aims
to deliver the service, detecting and resolving conflicts in
minimum amount of time.

8. Conclusions and Future Work
This paper has presented a design, model and architecture of a

policy based framework in pervasive environments. We have
proposed several techniques or strategies for conflict detection
and resolution. We also have implemented and tested our policy
system with some of conflict detection and resolution strategies
on the mobile emulator that runs on an 802.11b wireless network.
While implementing some of the conflict detection and resolution
strategies, we discovered that each of the proposed strategies both
for conflict detection and resolution offers some advantages and
disadvantages. The suitability of each strategy is dependent on the
system situations (i.e., number of entities, physical rooms,
contexts, types of services and target services that the system
employs), the system goals (i.e., it aims for high performance, so
requires a comprehensive and more complex conflict detection
(i.e., a predictive model) and resolution modules), and types of
conflicts that the system attempts to detect or resolve (i.e., we tend
to detect all policy space modality conflicts statically).

Moreover, we have experienced that using a combination of
static and dynamic conflict detection helps to improve the system
performance (minimize users wait time), rather than only using a
single detection technique (i.e., static only or dynamic only). We
also found that resolving all potential conflicts (possible or
definite conflicts), as soon as they are detected, would certainly
reduce the delay in responding to the user’s request, and so
improve system performance.

A number of aspects of future work that need to be further
analysed, explored and developed are: a) Continue working on
proactive and predictive conflict detection strategies. b) Allowing
users to modify their policy specifications dynamically at run
time. c) Apply our policy concepts (i.e., designs, conflict and
detection and resolution strategies) in different pervasive
environments or domains i.e., a museum gallery, shopping mall,
airport. d) Monitor the probability of potential conflict occurrence

e) study the nature and complexity of each conflict found in
pervasive systems, also finding out how much of memory, CPU
cycles required to detect and resolve conflicts both statically and
at run time.

9. References
[1] Weiser, M., “The Computer for the 21st Century”,

Scientific American, 9 1991.
[2] Chen, G. and Kotz, D. (2000), “A Survey of Context-

Aware Mobile Computing Research”, Dartmouth
Computer Science, Technical Report TR2000-381.

[3] Kagal, L., Finin, T. and Joshi, A., “A Policy Language
for a Pervasive Computing Environment, Proc. of
IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, Italy, June 2003.

[4] Scott, D., Beresford, A. and Mycroft, A., “Spatial
Policies for Sentient Mobile Applications”, Proc. of
IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, Italy, June 2003.

[5] Dunlop, N., Indulska, J. and Raymond, K., “Dynamic
Policy Model for Large Evolving Enterprises”, Proc.
5th IEEE Enterprise Distributed Object Computing
Conference, Seattle, Sept 2001.

[6] Dunlop, N., Indulska, J. and Raymond, K., “Dynamic
Conflict Detection in Policy-Based Management
Systems”, Proc. 6th IEEE Enterprise Distributed
Object Computing Conference, Lausanne, Sept 2002

[7] Dunlop, N., Indulska, J. and Raymond, K., “Methods
for Conflict Resolution in Policy-Based Management
Systems”, Proc. 7th IEEE International Enterprise
Distributed Object Computing Conference, Brisbane,
Sept 2003, pp 98-109.

[8] Montanari, R., Lupu, E. and Stefanelli, C., “Policy-
based dynamic reconfiguration of mobile-code
applications”, IEEE Magazine, July 2004.

[9] Syukur, E., Cooney, D., Loke, S.W. and Stanski, P.,
“Hanging Services: An Investigation of Context-
Sensitivity and Mobile Code for Localised Services”,
Proc. of the IEEE International Conference on Mobile
Data Management, USA, Jan 2004, pp.62-73.

[10] Syukur, E., Loke, S.W. and Stanski, P., “The Mobile
Hanging Services Framework for Context-Aware
Applications: the Case of Context Aware VNC”, Proc.
WIS Workshop, Portugal, April 2004.

[11] Syukur, E., Loke, S.W. and Stanski, P., “A Policy
based framework for Context Aware Ubiquitous
Services”, Proc. of the Embedded Ubiquitous
Computing Conference, Japan, August 2004, LNCS,
vol. 3207, Springer-Verlag, pp.346-355, 2004.

[12] Mally, E. “The Basic Laws of Ought: Elements of the
Logic of Willing”, 1926.

Policy Management for the Web WWW 2005

10 May 2005 20

Policy Conformance in the Corporate Blog Space
R.McArthur

Distributed Systems Technology
Centre

Brisbane,Australia
mcarthur@dstc.edu.au

P.D.Bruza
Distributed Systems Technology

Centre
Brisbane,Australia

bruza@dstc.edu.au

D.Song
Distributed Systems Technology

Centre
Brisbane,Australia

dsong@dstc.edu.au

ABSTRACT
This paper describes part of a solution to the interpretation of
human-readable policy documents into semi-automatic
conformance checking. Using a socio-cognitively motivated
representation of shared knowledge, and applying appropriate
inference mechanisms from a normative perspective, a mechanism
to automatically detect potentially non-conforming blog entries is
detailed. Candidate non-conforming blog entries are flagged for a
human to make a judgement on whether they should be published.
Analysis of data from a public corporate blog is analysed and
results suggest the methodology has merit.

Categories and Subject Descriptors
I.7. [Document and Text Processing], H.4. [Information Systems
Applications]

General Terms
Algorithms, Management, Experimentation, Human
Factors, Theory

Keywords
Semantic space, policy conformance, blog, knowledge
management

1. INTRODUCTION
Managers of organisations have long tried to control

what is the official word of the body versus what an
employee personally has presented. The (generally) open
nature of the WWW has meant an increasing desire for
control by some managers, while others have realised the
need for a different way of working – for example, the open
source software movement. Management in this new way
isn’t laissez faire, it respects the possibilities of more
openness but still has control, often through loosely worded
policy rather than the heavy legal jargon. This approach can
be characterised as being more carrot than stick.

Sun Microsystems has recently created a standard blog
space1 available to all employees, visible to the world. From
Tim Bray’s website, on the 6 June 20042:

It’s been running for some time, and it’s stable enough now to
talk about in public: blogs.sun.com is a space that anyone at
Sun can use to write about whatever they want. The people
there now are early adopters; there’s an internal email going

1 http://blogs.sun.com/
2 http://www.tbray.org/ongoing/When/200x/2004/06/06/BSC

out to the whole company Monday officially reinforcing that
blogging policy, encouraging everyone to write, and pointing
them at blogs.sun.com.
The Sun Policy on Public Discourse3 is written for

people. It encourages blogging stating “As of now, you are
encouraged to tell the world about your work, without
asking permission first (but please do read and follow the
advice in this note).” Because of the implications of the
policy, and the particularities and importance of wording
and intentionality, we have reproduced it in entirety in
Appendix A. Appropriate parts are quoted in the following
sections.

This paper describes part of a solution to the
interpretation of human-readable policy documents into
semi-automatic conformance checking. Using a socio-
cognitively motivated representation of shared knowledge,
and applying appropriate inference mechanisms, a
mechanism to automatically detect potentially non-
conforming blog entries is detailed. Candidate non-
conforming blog entries are flagged for a human to make a
judgement on whether they should be published. Figure 1
shows the workflow.

Figure 1: Workflow

The benefits are a significant lessening of work for
humans to evaluate each blog entry. Instead, only a subset is
required to be vetted by a person.

The remainder of this paper describes the approach
taken in more detail, starting with the notion of normative
disconformance and applying semantic spaces to blog data,

3
http://www.tbray.org/ongoing/When/200x/2004/05/02/Policy (note this

was so over the time of this study but may have changed)

Blog
entries

Blog system
to be

approved
approved

and
publicly
available

conformance
checker

possible
“bad” entries

checked entries

Policy Management for the Web WWW 2005

10 May 2005 21

thence to experimental results of examining Sun’s blog data
with respect to one element of its policy.

2. OPERATIONALISING NORMATIVE
DISCONFORMANCE

Let N be a normative model comprising principles (or
standards) S1,...Sn. Let B be a piece of augmentative
behaviour. Let B disconform with principle Si. If Si is
genuinely normative then B is a mistake (at a minimum) [1].

We believe that Sun’s problem with checking
compliance of blog content can be considered conceptually
from a normative perspective. With respect to Sun, read
“mistake” as a breach of policy.

Implementing this requires firstly a computational
variant of the normative model N, as well as an (semi-)
automated procedure for determining (or estimating)
disconformance.

Cognitive science distinguishes between three models of
cognitive performance:

1. the normative model N that sets standards of rational
performance, irrespective of the (computational) cost
of compliance;

2. the prescriptive model P which attenuates the
standards to make them executable; and

3. the descriptive model D which is a law governed
account of actual performance.

Sun’s policy can be considered as a high level
prescriptive model. It is assumed that the human moderators
apply quite some background knowledge B in order to
determine or surmise disconformance.

It seems unlikely that a sufficiently large training set of
disconforming blog entries can be acquired, therefore a
supervised learning approach is almost certainly not
appropriate for detecting disconformance. We take a
different approach. Certain words, or phrases, in the
prescriptive model flag concepts that are key to a particular
standard. These can be considered as pseudo-queries with
which blog entries can be retrieved and ranked.

It is well known from the field of information retrieval
that short queries are typically imprecise descriptions of the
associated information need. More effective retrieval can be
obtained via automatic query expansion the goal of which is
to “guess” related terms to the query at hand. The word
“guess” is used deliberately here as the system is ignorant of
the actual information need.

Considered in this light, query expansion is a
manifestation of abduction. The goal is to abduce related
terms to the pseudo-query which are relevant to the
intention behind the pseudo-query. If the query expansion
mechanism abduces poorly, retrieval precision will decline,
a consequence of which is that disconformant blog entries
will not be highly ranked in the retrieval ranking. In this
article, we will employ a query expansion mechanism which
abduces expansion terms by computing the information
flow between concepts in a high dimensional semantic
space. Query expansion experiments carried out in a

traditional information retrieval setting have shown
information flow to be promising, particularly for short
queries [2].

3. SEMANTIC SPACES
Nonaka and Takeuchi [3] produced an important and

viable knowledge creation system in 1995. We have
instantiated their notion of an externalisation mode in which
tacit knowledge is made explicit and “The semantic aspect
of information [as against the syntactic] is more important
for knowledge creation, as it focuses on conveyed
meaning.”, with Freyd’s [4] work on shareability which
posited

“a dimensional structure for representing knowledge is
efficient for communicating meaning between
individuals. That is, a small dimensional structure with
a small number of values on each dimension is argued
to be especially shareable, which might explain why
such structures are observed.” (Pp.198-9)
The combination of the explicit-tacit knowledge mode

with the dimensional representation is further strengthened
by Gärdenfors’ three level socio-cognitive model of
cognition [5]. He argues that meanings of words come from
conceptual structures in people’s heads – they emerge from
the conceptual structures harboured by individual cognition
together with the linguistic power structure within the
community. Of his three levels of representation, symbolic,
conceptual and associationist (sub-conceptual), it is the
middle, conceptual, level that is of relevance for this paper.

People write blog entries to communicate. In all
communication, there are both explicit and tacit parts to the
message. Ducheneaut and Bellotti [6] found that:

Persistent talk [in email] provides the context for the
solitary activity of viewing the content to which it
relates…However, during our interviews we, in fact,
saw many more examples of imprecise references that
were immediately understood than long, drawn-out,
explicit and literal descriptions or references.” and
“…email conversations are grounded in sufficient
mutual understanding to allow very brief, sketchy and
implicit references to succeed without posing significant
problems in interpretation.”
Compliance analysis of blog entries with respect to any

policy, whether perfectly formed or not, is always
dependent on the language used in the entry. Explicit
mention of keywords is unlikely to uncover the range of
candidate non-compliant entries that make up blog data in
the “real world”, and will most likely result in poor recall
and precision (concepts from information retrieval).

Our previous work [7,8,9] has shown the efficacy of a
socio-cognitively based dimensional structure-a semantic
space-as a knowledge representation framework. Although
there are a number of algorithms for populating such a
space, we will briefly describe one, HAL, below. We will
then discuss ways of using the semantic space in the context
of compliance and blog data.

Policy Management for the Web WWW 2005

10 May 2005 22

3.1 Creating the representation - HAL
Hyperspace Analogue to Language (HAL) is a model

and technique to populate a semantic space [10,11]. HAL
produces vectorial representations of words in a high
dimensional space that seem to correlate with the equivalent
human representations [12]. For example, word associations
computed on the basis of HAL vectors seem to mimic
human word association judgments. HAL is “a model that
acquires representations of meaning by capitalizing on
large-scale co-occurrence information inherent in the input
stream of language”.

Words from communication–blogs–are represented in
dimension structures through HAL. The space comprises
high dimensional vector representations for each term in the
vocabulary. Briefly, given an n-word vocabulary, the HAL
space is a nxn matrix constructed by moving a window of
length l over the corpus by one word increments ignoring
punctuation, sentence and paragraph boundaries. All words
within the window are considered as co-occurring with each
other with strengths inversely proportional to the distance
between them. After traversing the communication corpus,
an accumulated co-occurrence matrix for all the words in a
target vocabulary is produced: the semantic space.
More formally, a concept4 ci is a vector representation:

niii pcpcpci wwwc ,...,
21

= where
nppp ,...,, 21

are

called dimensions of ci, n is the dimensionality of the HAL

space, and
ii pcw denotes the weight of pi in vector of ci. A

dimension is termed a property if its weight is greater than
zero. A property pi of a concept ci is a termed quality

property iff
ii pcw > ∂, where ∂ is a non-zero threshold

value. Let)(cQP denote the set of quality properties of

concept c.

3.2 Combining concepts
Concept combination is important as combinations of

words in may represent a single underlying concept, for
example, Sun’s share price. An important intuition in
concept combination is that one concept can dominate the
other. For example, the term “Sun” can be considered to
dominate the term “price” because it carries more of the
information in the phrase. Given two concepts

npcpcpc wwwc
12111

,...,1 = &
npcpcpc wwwc

22212
,...,2 = ,

the resulting combined concept is denoted c1⊕c2. The
following concept combination heuristic is essentially a
restricted form of vector addition whereby quality
properties shared by both concepts are emphasized, the
weights of the properties in the dominant concept are re-
scaled higher, and the resulting vector from the combination
heuristic is normalized to smooth out variations due to

4 The term “concept” is used somewhat loosely; it can be
envisaged as “term” in the traditional IR sense

differing number of contexts the respective concepts appear
in.
Step 1: Re-weight c1 and c2 in order to assign higher
weights to the properties in c1.

)(

*

1

1

1

1
1

k

i

i

pc
k

pc
pc wMax

w
w

�
� += and

)(

*

2

2

2

2
2

k

i

i

pc
k

pc

pc wMax

w
w

�
� +=

)0.1,0.0(, 21 ∈�� and 21 �� >

For example, if 5.01 =� and
2� =0.4, then property

weights of c1 are transferred to interval [0.5, 1.0] and
property weights of c2 are transferred to interval [0.4, 0.8],
thus scaling the dimensions of the dominant concept higher.
Step 2: Strengthen the weights of properties appearing in
both c1 and c2 via a multiplier α; the resultant highly
weighted dimensions constitute significant properties in the
resultant combination.

,*|))()((
1121 ii pcpcii wwcQPpcQPp α=∈∧∈∀

ii pcpc ww

22
*α= , where α > 1.0

Step 3: Compute property weights in the composition
c1⊕c2:

niwww
iii pcpcpcc ≤≤+=⊕ 1,

2121)(

Step 4: Normalize the vector c1⊕c2. The resultant vector
can then be considered as a new concept, which, in turn, can
be composed to other concepts by applying the same
heuristic.

In order to deploy the information flow model in an
experimental setting, the pseudo-queries have to analysed
for concept combinations. In particular, the question of
which concept dominates which other concept(s) needs to
be resolved. As there seems to be no reliable theory to
determine dominance, a heuristic approach is taken in
which dominance is determined by multiplying the query
term frequency (qtf) by the inverse document frequency
(idf) value of the query term. More specifically, query terms
can re ranked according to qtf*idf. Assume such a ranking
of query terms: q1,...,qm (m > 1). Terms q1 and q2 can be
combined using the concept combination heuristic
described above resulting in the combined concept q1⊕q2,
whereby q1 dominates q2 (as it is higher in the ranking). For
this combined concept, its degree of dominance is the
average of the respective qtf*idf scores of q1 and q2. The
process recurses down the ranking resulting in the
composed query “concept” ((..(q1 ⊕ q2) ⊕ q3) ⊕ ...) ⊕qm).
This denotes a single vector from which query models can
be derived. If there is a single query term (m =1), it’s
corresponding normalized HAL vector is used for query
model derivation.

As it is important to weight pseudo-query terms highly,
the weights of query terms which appeared in the initial
query were boosted in the resulting query model by adding
1.0 to their score. Due to the way HAL vectors are
constructed, it is possible that an initial query term will not
be represented in the resulting query model. In such cases,

Policy Management for the Web WWW 2005

10 May 2005 23

the query term was added with a weight of 1.0. Pilot
experiments show that the boosting heuristic performs
better than the use of only query models without boosting.

3.2 Using the semantic space – information
flow
Barwise & Seligman [13] have proposed an account of
information flow that provides a theoretical basis for
establishing informational inferences between concepts. For
example,

share, price |- SUN
illustrates that the concept “SUN” is carried informationally
by the combination of the concepts “share” and “price”.
Said otherwise, “SUN” flows informationally from “share”
and “price”. Such information flows are determined by an
underlying information state space. A HAL vector can be
considered to represent the information “state” of a
particular concept (or combination of concepts) with
respect to a given corpus of text. The degree of information
flow between “satellites” and the combination of “space “
and “program” is directly related to the degree of inclusion
between the respective information states represented by
HAL vectors. Total inclusion leads to maximum
information flow. Inclusion is a relation ⊆ over the concept
space.
Definition 1 (HAL-based information flow)

λ>⊆⊕−)degree(iff ,,1 jin ccjii �

where ci denotes the conceptual representation of token i,
and λ is a threshold value. (For ease of exposition, ⊕ci will
be referred to as ci because combinations of concepts are
also concepts).

Note that information flow shows truly inferential
character, i.e., concept j is not necessarily a dimension of
the ⊕ci. The degree of inclusion is computed in terms of
the ratio of intersecting quality properties of ci and cj to the
number of quality properties in the source ci:

degree(c
i
 ⊆ c

j
) = ∑

∑

∈

∧∈

)iQP(cp k

pic k

))jQP(c)i(QP(cp l

pic l

w

w

In terms of the experiments reported below, the set of
quality properties QPi(ci) in the source HAL vector ci is
defined to be all dimensions with non-zero weight (i.e., ∂ >
0). The set of quality properties Qji(cj) in the target HAL
vector cj is defined to be all dimensions greater than the
average dimensional weight within cj. These definitions for
determining the quality properties in the source concept ci
and target concept cj were determined via pilot studies in
information flow computation.

2.3 Deriving query models via
information flow
Given the pseudo-query Q=(q1,...,qm) drawn manually from
a standard S in the prescriptive model P, a query model can
be derived from Q in the following way:
• Compute degree(⊕ci ⊆ ct) for every term t in the

vocabulary, where ⊕ ci represents the conceptual
combination of the HAL vectors of the individual query
terms miqi ≤≤1, and ct represents the HAL vector for

term t.
• The query model kk ftftQ :,,: 11 �=′ comprises

the top k information flows
Observe that the weight fi associated with the term ti in the
query model is not probabilistically motivated, but denotes
the degree to which we can infer ti from Q in terms of
underlying HAL space.

4. BLOG DATA
Blog data, as input to computational analysis as distinct

from human comprehension, is inherently “dirty”: it can
consist of anything from a URL, presumably as aid to the
memory of the author and often with a longer title
explaining something, or it can be a long-winded polemic in
the first person. Nardi et al [17] found that people blog for
(at least) five reasons – documenting one’s life, providing
commentary and opinions, expressing deeply felt emotions,
articulating ideas through writing, and forming and
maintaining community forums. While humans find it
relatively easy to navigate the morass, find interesting
elements and determine the worth of data, comparatively
this is almost impossible for current computer systems.

A vital element is a filter to identify “interesting” blog
entries which would be used to populate the semantic
space(s). “Interesting” is determined by the particular
person doing the searching, or the particular problem. For
example, if the question is one of compliance—is a
particular blog entry compliant with Sun’s policies—the
filter would provide very different entries than if an
individual were interested in a particular Sun product.

It is feasible to produce filters which could identify the
five+ (non-exclusive) motivations as only some of these are
relevant to policy conformance checking. It is also
important to filter the difference between a wilful breaking
of policy and an inadvertent one.

Many such situational-based filters are possible. The
focus of these experiments was to apply one such filter to
the blog entries. Note that for checking of blog entry
compliance, the filter may be enacted prior to blog entry
publication (as in Figure 1) or afterwards. While the method
we describe could be used in both ways, we envisage that
human invigilators would prefer to peruse candidate entries
at certain times during the day rather than being interrupted
for each possibility. This is of course offset by the desire to
preserve the currency of the entries.

Policy Management for the Web WWW 2005

10 May 2005 24

4.1 Experimental data
We examined all entries from the Sun blog RSS feed

from 19 July to 9 August (22 days) 2004. There were 1507
RSS entries at an average of 68.5 per day (2.8 per hour); the
minimum was 17 entries on July 31st. However, on two
days-the 26th and 27th of July-there were 404 and 140
entries respectively. This was due to discussion about a new
product about to be released ([16] have some further
insights into these phenomena). Figure 1 charts the entries
over time.

The size of the vocabulary (stop words removed) was
24,841 words. As we only examined entries from the RSS
feed, we were not able to account for comments submitted
to existing blog entries, and other associated text that did
not appear in the RSS. Where available, this could augment
the analysis.

It is important to note that no set of disconforming data
was provided. We do not have details of any blog entries
that were filtered prior to publication, and cannot guarantee
that those that we worked with are all still extant. All
experimental work was conducted on blog entries that were
publicly available at the time. We do not know if Sun would
consider any particular entry we have discussed
disconformant. In this way, although our analysis lets us
work unfettered by internal prejudice, we may miss nuances
that an internal assessor would not.

Figure 2: Number of blog entries over experiment time

5. ANALYSIS
To provide a flavour of the data in the form of semantic

spaces, two tables show the results of computations creating
semantic spaces over the entire collection: table 1 shows the
words with the largest number of dimensions (ie. words
used in many contexts); table 2 shows the “largest” explicit
dimensions of the “sun” vector.

Table 1: "Sun" vector top dimensions

sun 1008 back 387
solaris 662 entry 319
new 651 things 314
java 651 great 313
open 556 dtrace 300
good 516 software 295
work 474 blog 277
people 461 code 266
system 420 linux 265
don 415
source 397

Table 2: Top “sun” vector dimensions (cols 1-2) and nearest

concepts (cosine; cols 3-4); 4511 dimensions, -x: 19.2, �2: 54.6

sun 2266.00 java 0.84
java 1443.00 working 0.75
open 819.00 microsystems 0.72
solaris 817.00 workstation 0.72
system 565.00 product 0.72
source 529.00 work 0.71
new 459.00 lot 0.71
work 456.00 community 0.70
working 438.00 customers 0.70
people 385.00 system 0.70
company 379.00 product 0.70
customers 306.00 people 0.69
server 299.00 developer 0.69
desktop 292.00 company 0.69
blog 278.00 ibm 0.65
software 277.00 desktop 0.65
good 275.00 software 0.65
product 275.00 employees 0.65
ray 273.00 developers 0.64
microsystems 266.00 worked 0.64
lot 262.00 new 0.64
community 252.00 reason 0.64
linux 249.00 part 0.64
cluster 243.00 ray 0.63
employees 240.00 vendor 0.63
things 232.00 customer 0.63
products 225.00 cluster 0.62
business 223.00 hardware 0.61
support 219.00 new 0.61
ibm 213.00 don 0.61
workstation 213.00 companies 0.61
...

5.1 Information flow based query expansion
The “Financial rules” section in the policy (Appendix A)

states:
There are all sorts of laws about what we can and can’t
talk about. Talking about revenue, future product ship
dates, road maps, or our share price is apt to get you,
or the company, or both, into legal trouble.

Policy Management for the Web WWW 2005

10 May 2005 25

The challenge is to mimic human’s ability to interpret the
above standard while considering a certain blog entry.

A semantic space HB can be constructed from the blog
corpus B using the Hyperspace Analogue to Language
model. The goal is to provide a semantic representation
σ(c) for concept c which will be used as a “query” to
match incoming blog entries. If the match score is above a
certain threshold it can be flagged for human perusal.

In our previous work, encouraging improvements in
retrieval precision were produced by information flow
based query expansion [2]. For the purposes of illustration,
we focus on the financial area by characterizing it with the
concept “share price”, which is a noun phrase. Our concept
combination heuristic produces a semantic representation of
the compound using the individual semantic representations
σ(share) and σ(price). (See [15] for more details of this
heuristic). Each of the two pseudo-queries was expanded
using information flow. Table 3 shows the top information
flows from the concept “share price”. The top 65
information flows (empirically determined) were used to
expand the pseudo-query. The resulting expanded query
was matched against blog entries which were ranked on
decreasing order of retrieval status score. In order to
facilitate matching each blog was indexed using the BM-25
term weighting score5, with stop words removed. Both
query and document vectors were normalized to unit length.
Matching was realized by the dot product of the respective
vectors and the top five ranked blog entries were chosen.
This threshold was chosen as we assume that human judges
will not want to manually peruse rankings much longer than
this.

Table 3: Information flows from the concept “share price"

Flow Value
price 0.77
share 0.68
sun 0.59
good 0.51
back 0.44
don 0.44
software 0.53
... ...

5.2 Experimental Results
Due to the small number of pseudo-queries it is not

warranted to present a precision-recall analysis. A much
larger experimental setting would be required.

Discussion will proceed based on anecdotal evidence.
The following document (next column) was ranked second
with respect to the pseudo-query “share price” and is the
most interesting of the top five.

5 BM-25 represents state-of-the-art in term weighting,
e.g. [14]

5.3 Discussion
The retrieval of the above document demonstrates the

potential of information flow query expansion. Note how
the phrase “share price” does not appear in this blog entry,
but is clearly about a strongly related concept (stock
option). This example also shows how information flow
based query expansion facilitates the promotion of
potentially disconformant blogs in the retrieval ranking
when there is little or no term overlap between the pseudo-
query and blog entry. In order to place this claim in
perspective, we expanded the pseudo-query “share price”
with a highly respected probabilistic retrieval model - the
BM25 model [14], and a query expansion technique - the
Robertson’s Term Selection Value (TSV) [14]. Both
techniques were unable to rank the above document in the
top five.

<CONTEXT ID=”//blogs.sun.com/roller/page/pdiamond/20040624#stock
options why not expense”>
</CONTEXT>
Stock Options - Why not expense them?
Just came from the rally in Palo Alto to oppose FASB ruling that stock
options should be expensed. For those who do NOT have access to stock
options, the answer seems pretty simple:

 “These people are making lots of money off stock options, taking
advantage of opportunities we don’t have and inaccurately reflecting
their expense on their companies’ bottom lines. Of course they should
be counted as an expense when they are granted”

I’m sure a lot of this is also reflective of the abuses which have been
widely reported, of CxOs making million$ while their companies went
down the tubes.
Now here’s another view of reality - for those of us who have

• made some money (thank you, Netscape) and
• not made any yet (I am still optimistic, Sun),

it also seems pretty obvious.
All those options we have been granted which we do NOT exercise,
because they are “underwater”, e.g.:
• Netscape /AOL options at $75 when the stock price was $20,
• current Sun options at $12 (and I know many people with options
well above that price) with the stock a little over $4, are irrelevant to
anyone. They are no more expense to the companies which granted
them than they are profit to the employees who are not exercising them.

If and when they are exercised, then let’s talk about how the companies
should expense the benefit received by the employees. I admit to being
ignorant as to how this is handled today. This seems to be a much more
relevant issue than trying to assess some current value on some theoretical
future benefit, which in many cases will either not happen, or will occur at
a totally unpredictable level.

June 24, 2004 04:07 PM PDT Permalink

5.4 Temporal topics of Pseudo-queries
Tracking the temporal profile of a pseudo-query over

time can help visualize blog activity around a topic relevant
to detecting disconformance. Figure 3 depicts the
probability of the pseudo-query “share price” over time.
The underlying theory combines information flow based
query expansion [2] with document language models. The
probabilities of queries were calculated from top ten
documents retrieved by the information flow model and
then smoothed using a back-off model based on collection
statistics. The spikes in the figure depict localized

Policy Management for the Web WWW 2005

10 May 2005 26

probabilities of the topic which can be used to localize
activity around a pseudo-query. Such localities may warrant
closer inspection for disconformance.

Figure 3: Temporal profile for topic "share price"

5.5 Optimal projections
The approach here is to assume that blogs disconforming

to a standard Si will cluster around a given axis, or
somehow project differently into the semantic space than
conforming blog entries. Dimensional reduction approaches
may gain some purchase, for example independent
component analysis or projection pursuit. Further
investigation is required.

4. CONCLUSION
This article deals with the problem of providing

automated support for the detection of disconformant blog
entries with respect to a publishing policy. The problem is
considered from a normative perspective. The detection of
disconformant blog entries has an abductive character.
Automated support for detecting disconformant blogs is
realized via query expansion, the goal of which is to abduce
salient terms in relation to pseudo-query representations of
publishing standards. The expanded pseudo-queries are
computed vie information flows through a high dimensional
semantic space derived from the blog corpus.

Anecdotal evidence suggests that information flow based
query expansion may be promising in regard to retrieving
disconformant blog entries, which can then be manually
examined for a final judgment. The case study reported in
this paper suggests that the problem of furnishing (semi-)
automated support for the detection of disconformat blog
entries to be a challenging one requiring further
investigation using non-supervised approaches.

ACKNOWLEDGMENTS
The work reported in this paper has been funded in part by the

Co-operative Research Centre for Enterprise Distributed Systems
Technology (DSTC) through the Australian Federal Government’s
CRC Programme (Department of Education, Science, and
Training). The research was funded by a Discovery grant from the
Australian Research Council. Thanks to the members of the
Research Management Team and participants.

REFERENCES
[1] Gabbay, D. and Woods, J. (2003): Normative models of

rational agency: the theoretical disutility of certain
approaches. Logic Journal of the IGPL. 11:597-613

[2] Bruza, P.D and Song, D. (2002): Inferring query models
by computing information flow. In Proceedings of the 11th
International Conference on Information and Knowledge
Management (CIKM 2002) ACM Press, pp.260-269.

[3] Nonaka, I. and Takeuchi, H. (1995): The Knowledge-
Creating Company, OUP, New York

[4] Freyd, J. (1983). Shareability: the social psychology of
epistemology. Cognitive Science.7:191-210

[5] Gärdenfors, P. (2000): Conceptual Spaces: the Geometry of
Thought. MIT Press, London, 2000

[6] Ducheneaut, N. and Bellotti, V. (2003). 'Ceci n'est pas un
objet? Talking about things in email. Journal of Human-
Computer Interaction (special issue) 18(1-2): 85-110.

[7] McArthur, R. and P. Bruza (2003). Dimensional
Representations of Knowledge in Online Community. In
Chance Discovery. Y.Ohsawa & P.McBurney, Springer:
98-112

[8] McArthur, R. and P. Bruza (2003). Discovery of Tacit
Knowledge and Topical Ebbs and Flows within the
Utterances of Online Community. In Chance Discovery.
Y. Ohsawa and P. McBurney, Springer: 115-131.

[9] McArthur, R. and P. Bruza (2003). Discovery of Implicit
and Explicit Connections between People using Email
Utterance. In Eighth European Conference on Computer-
Supported Cooperative Work (ECSCW), Helsinki, Finland,
Kluwer.

[10] Burgess, C., Livesay, K. and Lund, K. (1998): Explorations
in context space: words, sentences, discourse. Discourse
Processes, v25, pp.211-257

[11] Burgess, C. and K. Lund (1997b). Representing Abstract
Words and Emotional Connotation in a High-Dimensional
Memory Space. Cognitive Science.

[12] Lund, K., C. Burgess and R. A. Atchley (1995). Semantic
and Associative Priming in High-Dimensional Semantic
Space. Cognitive Science, Erlbaum Publishers, Hillsdale,
N.J.

[13] Barwise, J. and Seligman, J. (1997) Information Flow.
Cambridge University Press.

[14] Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M.
and Gatford, M. (1995) Okapi at TREC-3. In Proceedings
of TREC-3 1995. Available at trec.nist.gov.

[15] Song,D. and Bruza, P. (2003) Towards context sensitive
information inference. Journal of the American Society for
Information Science and Technology, 54(3):321-334.

[16] Kumar, R., Novak, J., Raghavan, P. and Tomkins, A.
(2004): Structure and evolution of blogspace.
Communications of the ACM, 47(12) pp35-39

[17] Nardi, B., Shiano, D., Gumbrecht, M. and Swartz, L. (2004)
Why we blog? Communications of the ACM. v47(12)

Policy Management for the Web WWW 2005

10 May 2005 27

APPENDIX A: SUN’S BLOGGING POLICY

Advice By speaking directly to the world, without benefit of
management approval, we are accepting higher risks in the interest
of higher rewards. We don’t want to micro-manage, but here is
some advice.
It’s a Two-Way Street The real goal isn’t to get everyone at Sun
blogging, it’s to become part of the industry conversation. So,
whether or not you’re going to write, and especially if you are, look
around and do some reading, so you learn where the conversation
is and what people are saying.
If you start writing, remember the Web is all about links; when you
see something interesting and relevant, link to it; you’ll be doing
your readers a service, and you’ll also generate links back to you; a
win-win.
Don’t Tell Secrets Common sense at work here; it’s perfectly OK
to talk about your work and have a dialog with the community, but
it’s not OK to publish the recipe for one of our secret sauces.
There’s an official policy on protecting Sun's proprietary and
confidential information, but there are still going to be judgment
calls.
If the judgment call is tough—on secrets or one of the other issues
discussed here—it’s never a bad idea to get management sign-off
before you publish.
Be Interesting Writing is hard work. There’s no point doing it if
people don’t read it. Fortunately, if you’re writing about a product
that a lot of people are using, or are waiting for, and you know what
you’re talking about, you’re probably going to be interesting. And
because of the magic of hyperlinking and the Web, if you’re
interesting, you’re going to be popular, at least among the people
who understand your specialty.
Another way to be interesting is to expose your personality; almost
all of the successful bloggers write about themselves, about
families or movies or books or games; or they post pictures. People
like to know what kind of a person is writing what they’re reading.

Once again, balance is called for; a blog is a public place and you
should try to avoid embarrassing your readers or the company.
Write What You Know The best way to be interesting, stay out of
trouble, and have fun is to write about what you know. If you have a
deep understanding of some chunk of Solaris or a hot JSR, it’s
hard to get into too much trouble, or be boring, talking about the
issues and challenges around that.
On the other hand, a Solaris architect who publishes rants on
marketing strategy, or whether Java should be open-sourced, has a
good chance of being embarrassed by a real expert, or of being
boring.
Financial Rules There are all sorts of laws about what we can and
can’t say, business-wise. Talking about revenue, future product
ship dates, roadmaps, or our share price is apt to get you, or the
company, or both, into legal trouble.
Quality Matters Use a spell-checker. If you’re not design-oriented,
ask someone who is whether your blog looks decent, and take their
advice on how to improve it.
You don’t have to be a great or even a good writer to succeed at
this, but you do have to make an effort to be clear, complete, and
concise. Of course, “complete” and “concise” are to some degree in
conflict; that’s just the way life is. There are very few first drafts that
can’t be shortened, and usually improved in the process.
Think About Consequences The worst thing that can happen is
that a Sun sales pro is in a meeting with a hot prospect, and
someone on the customer’s side pulls out a print-out of your blog
and says “This person at Sun says that product sucks.”
In general, “XXX sucks” is not only risky but unsubtle. Saying
“Netbeans needs to have an easier learning curve for the first-time
user” is fine; saying “Visual Development Environments for Java
suck” is just amateurish.
Once again, it’s all about judgment: using your weblog to trash or
embarrass the company, our customers, or your co-workers, is not
only dangerous but stupid.
Disclaimers Many bloggers put a disclaimer on their front page
saying who they work for, but that they’re not speaking officially.
This is good practice, but don’t count it to avoid trouble; it may not
have much legal effect.

Policy Management for the Web WWW 2005

10 May 2005 28

Expressing WS Policies in OWL

Bijan Parsia
Maryland Information and

Network Dynamics Laboratory
University of Maryland

College Park, MD 20742
bparsia@isr.umd.edu

Vladimir Kolovski
Dept. of Computer Science

University of Maryland
College Park, MD 20742

kolovski@cs.umd.edu

Jim Hendler
Maryland Information and

Network Dynamics Laboratory
University of Maryland

College Park, MD 20742
hendler@cs.umd.edu

ABSTRACT
In this paper, we present two translations of the Web Service
Policy Framework (WS-Policy) into OWL-DL. First, we
provide an introduction to WS-Policy and we argue the
benefits of using OWL and RDF to express web service
policies. Then, we provide two translations from WS-Policy
to OWL, one of them representing policies as instances, and
the second one as classes. Finally, we provide a survey of
existing web policy languages and a general idea of their
expressivitiy.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representations
and Formalisms – Semantic Web, OWL, RDF, Web Service
Policy.

General Terms
Performance, Design, Standardization, Languages.

Keywords
Web services, Policy languages, OWL, RDF, WS-Policy

1. Introduction
Web services interact with each other by exchanging SOAP
messages. To provide for a robust development and
operational environment, services are described using
machine-readable metadata. This metadata serves several
purposes, one of them being describing the capabilities and
requirements of a service — often called the service policy.
In recent years, there have been many different web service
policy language proposals, all of them describing languages
with varying degrees of expressivity and complexity.
However, with most current proposals it is difficult to
determine their expressivity and computational properties as
most lack formal semantics. One characteristic of the
proposed languages is that they involve policy assertions and
combinations of assertions. For example, a policy might
assert that a particular service requires some form of reliable
messaging or security, or it may require both reliable
messaging and security. Several industrial proposals (e.g.,
WS-Policy [13] and Features and Properties [2]) appear to
restrict them to a kind of propositional logic with policy
assertions being atomic propositions and the combinations
being conjunction and disjunction. By mapping the policy

language constructs into a logic (e.g., some variant of first
order logic) we can acquire a clear semantics for the policy
languages, as well as a good sense of the computational
aspects of the languages.
If we can map the policy languages into a standardized logic,
then we can benefit from the tools and general expertise one
expects to come with a reasonably popular standard. By
mapping two policy languages into the same background
formalism, we will be able to provide some measure of
interoperability between policies written in distinct
languages. If we are smart in our mapping, we should also be
able use pre-existing reasoners for the standardized logic to
do useful reasoning about policies.
Our language of choice is the Web Ontology Language,
OWL [4], and the Resource Description Framework (RDF
[6]). Both RDF and OWL are strict subsets of first order
logic, with the subspecies OWL-DL being a very expressive
yet decidable subset. OWL-DL builds on the rich tradition of
description logics where the tradeoff between computational
complexity and logical expressivity has been precisely and
extensively mapped out and practical, reasonably scalable
reasoning algorithms and systems have been developed.
In this paper, we have mapped one of the policy languages,
WS-Policy, to OWL-DL. WS-Policy is a policy language
being developed by IBM, Microsoft, BEA, and other major
web services vendors and is generally considered to be the
policy language with the most momentum. We have chosen
two approaches: expressing policies as instances, and
expressing them as classes. With the latter, we are able to use
our OWL-DL reasoner, Pellet [8] as a policy engine with
analysis services that go far beyond what is usually offered.
In the next section we describe our mappings.

2. Mappings
Our implementation consists of two different translations,
one being where the WS-Policy grammar is encoded in
OWL and the other where we are trying to capture the
formalism underlying the WS-Policy grammar. In the first
case, individual policies are translated to OWL-DL
instances, whereas in the second case they are translated into
OWL-DL class expressions. This is no surprise as WS-Policy
is pretty clearly intended to be a subset of propositional logic
and OWL-DL is propositionally closed.

Policy Management for the Web WWW 2005

10 May 2005 29

2.1. Policies as Instances
The first ontology is an attempt at designing an OWL
ontology that accurately reflects the WS-Policy grammar
which is originally expressed as an XML Schema. This
translation essentially captures the syntax of WS-Policy, but
not its semantics.
As mentioned before, WS-Policy introduces a simple
grammar for expressing policy assertions. These assertions
allow developers to add metadata to service description at
development time or at runtime. Examples of development
time policy would include a specification of which character
encodings are supported, or which specifications, and which
versions of those specifications are supported by the service.
An example of runtime policy would include interruption in
the availability of the Web service due to system
maintenance.
Assertions are the building block of a Web service policy
and satisfying them usually results in a behavior that satisfies
the conditions for the service endpoints to communicate. A
policy assertion is supported by a requestor if and only if the
requestor satisfies the requirement, or accommodates the
capability, corresponding to the assertion. Policy assertions
usually deal with domain-specific knowledge, and they can
be grouped into policy alternative. An alternative is satisfied
only if the requestor of the service satisfies all of the policy
assertions contained in the alternative. Note that in our

ontology policy assertions and alternatives are represented
with separate OWL classes related with the
containsAssertions property. Determining whether a policy
alternative is supported is done automatically using the
results of the policy assertions.
A policy is supported by a requestor of a service if the
requestor satisfies at least one of the alternatives in the
policy. Once the policy alternatives have been evaluated, it
can be automatically deduced whether a policy is supported
by the requestor.
There are two operators used to express relations between
policies, alternatives and assertions: All and ExactlyOne.
These operators are implemented as OWL classes
OperatorAll and OperatorExactlyOne in our ontology.
OperatorAll requires all the assertions to hold in order for the
policy alternative to be satisfied. OperatorExactlyOne
specifies that exactly one of the assertions has to hold in a
collection of policy alternatives for the policy assertion to be
satisfied.
In order to illustrate our work, we present an OWL version
of a policy requiring the web service to use X.509
certificates or Kerberos tickets as security token types.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:wsp=”http://www.mindswap.org/~kolovski/ws-policy.owl#"

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">

<wsp:Policy>
 <wsp:constrainedBy>
 <wsp:OperatonExactlyOne>
 <wsp:constrainedBy>
 <wsse:SecurityToken wsp:Preference="100">
 <wsp:Usage rdf:resource="http://www.w3.org/2004/08/20-ws-pol-pos/ns#Required"/>
 <wsse:tokenType>wsse:Kerberosv5TGT</wsse:tokenType>
 </wsse:SecurityToken>
 </wsp:constrainedBy>
 <wsp:constrainedBy>
 <wsse:SecurityToken wsp:Preference="1">
 <wsp:Usage rdf:resource="http://www.w3.org/2004/08/20-ws-pol-pos/ns#Required"/>
 <wsse:tokenType>wsse:X509v3</wsse:tokenType>
 </wsse:SecurityToken>
 </wsp:constrainedBy>
 </wsp:OperatolExactlyOne>
 </wsp:constrainedBy>
</wsp:Policy>
</rdf:RDF>

Listing 1. RDF representation of a policy using a WS-Policy grammar expressed in OWL1.

1 The ontology capturing the WS-Policy grammar is available at
 http://mindswap.org/dav/ontologies/ws-policy_instance.owl

The approach described above gives us a clear way of expressing
the syntax of WS-Policy in OWL. This approach has its

advantages, as described in Section 2. However, the previous
ontology does not capture the semantics of WS-Policy, so it is

Policy Management for the Web WWW 2005

10 May 2005 30

http://mindswap.org/dav/ontologies/ws-policy_instance.owl

difficult, for example, to determine whether two policies are
consistent with each other. The following translation does a better
job of capturing the semantics of WS-Policy.

2.2. Policies as Classes
Our second translation maps the WS-Policy formalism directly in
OWL. We accomplish that by translating the WS-Policy
constructs from a normal form policy expression into OWL
constructs. A normal form policy expression is a straightforward
XML Infoset representation of a policy, enumerating each of its
alternatives that in turn enumerate each of its assertions.
Following is a schema outline for the normal form of a policy
expression:

<wsp: Policy…>
 <wsp:ExactlyOne>
 [<wsp:All> [<Assertion…> … </Assertion>]* </wsp:All>]*
 </wsp:ExactlyOne>
</wsp:Policy>
 Listing 2. Normal form of a policy expression
Policy expressions can also be represented in more compact
forms, using additional operators such as wsp:Optional, however
as shown in [13] the policy expressions can all be expanded to
normal form. Therefore we only provide a mapping of the
constructs used in a normal form policy expression:
wsp:ExactlyOne and wsp:All.
First, we map policy assertions directly into OWL-DL atomic
classes (which correspond to atomic propositions). Though WS-
Policy assertions often have some discernible substructure, it is
not key to their logical status in WS-Policy. Or rather, that
substructure is idiosyncratic to the assertion set, rather than being
a feature of the background formalism. So a general WS-Policy
engine must be adapted to deal with their structure, if it is to do
so. The WS-Policy specification asserts:

“Assertions indicate domain-specific (e.g., security,
transactions) semantics and are expected to be defined
in separate, domain-specific specifications.”

It seems unfortunate that each domain-specific specification
comes with its own domain specific syntax. If we are to capture
the semantics of each assertion language, we must separately map
each assertion language into OWL. Our default of treating each
assertion as a simple atomic proposition is reasonable for general
policy manipulation, since a general purpose policy engine will
work roughly the same way.
Mapping wsp:All to an OWL construct is straightforward because
wsp:All means that all of the policy assertions enclosed by this
operator have to be satisfied in order for communication to be
initiated between the endpoints. Thus, it is a logical conjunction
and can be represented as an intersection of OWL classes. Each of
the members of the intersection is a policy assertion, and the
resulting class expression (using the operator owl:intersectionOf)
is a custom-made policy class that expresses the same semantics
as the WS-Policy one.

Handling wsp:ExactlyOne might be trickier, depending on the
interpretation of the construct. There are two possible
interpretations:

a) wsp:ExactlyOne means that a policy is supported
by a requester if and only if the requester supports
at least one of the alternatives in the policy. In the
previous version of WS-Policy there was a
wsp:OneOrMore construct capturing this meaning.
In such case, the wsp:ExactlyOne is an inclusive
OR , and can be mapped using owl:unionOf.

b) The other interpretation is that wsp:exactlyOne
means that only one, not more, of the alternatives
should be supported in order for the requester to
support the policy. This is supported by [13],
where it’s stated that although policy alternatives
are meant to be mutually exclusive, it cannot be
decided in general whether or not more than one
alternative can be supported at the same time. Our
translation covers this more complicated case.

Wsp:ExactlyOne can be translated in OWL in the following way:
for n different policy assertions, expressed as OWL classes
themselves, wsp:ExactlyOne is the class expression consisting of
the members of each separate policy class that do NOT also
belong to another policy class. In OWL terms, it is the union of all
of the classes with the complement of their pair-wise
intersections. Because of the pair-wise intersections there is a
quadratic increase in the size of the OWL construct that is used as
a mapping for wsp:ExactlyOne. Following is a table summarizing
both of the translations:

Table 1. Mapping WS-Policy to OWL

WS-Policy Construct OWL Expression

 Wsp:All (policies A
and B)

intersectionOf (A B)

Wsp:ExactlyOne
(policies A and B)

intersectionOf(
 complementOf (intersectionOf (A B))
 unionOf (A B)
)

In order to illustrate how the mapping of wsp:All and
wsp:ExactlyOne works, we present a sample policy ontology.
The general WS-Policy Assertions are stored as OWL classes, for
example there is a SecurityTokenType class with subclasses
KerberosTicket, UsernameToken and X509Certificate. Other
assertions are stored, too: Language, Messaging, SpecVersion and
TextEncoding. Figure 1 illustrates the WS-Policy class hierarchy.

Policy Management for the Web WWW 2005

10 May 2005 31

 Figure 1. Sample Policy Ontology

Having stored a part of WS-PolicyAssertions [14] as OWL
classes, now it’s possible to develop our own custom policies. For
example, say we wanted a policy such that the requestor supports
Kerberos tickets and reliable messaging. Those two conditions
can be represented as two assertions in a policy alternative,
implying that they can be mapped to an owl:intersectionOf. The
corresponding OWL expression shown in Figure 2.

Figure 2. Wsp:All representation in OWL

For the wsp:ExactlyOne example, we consider a policy that
expects the requestor to provide either a Kerberos ticker, or an
X509 certificate, but not both. In OWL, it would be represented
by the class expression composed of the elements that are
exclusive to KerberosTicket and X509Certificate. Figure 3
represents a serialization of the class expression in RDF/XML.

Policy Management for the Web WWW 2005

10 May 2005 32

Figure 3. Wsp:ExactlyOne representation in OWL

2.3. Policy processing

One of our arguments for expressing policies using OWL was the
ability to reason about policy containment – whether the
requirements for supporting one policy are a subset of the
requirements for another. That would allow us to be more flexible
in determining whether a particular requestor supports a policy,
in the cases where the requestor supports a superset of the
requirements established by the policy.

 Figure 4. Example of policy containment

In the previous figure, Retry-On-FailureUsernamePolicy is an
intersection of Retry-On-Failure and UsernameToken. However,

since Retry-On-Failure is a subclass of Reliable, our OWL-DL
reasoner [8] classifies Retry-On-FailureUsernamePolicy as a
subclass of GeneralReliabilityUsernamePolicy , meaning that any
user that supports the latter will also support the former.

 Figure 5. Example of policy incoherence

The above figure is an example of Swoop showing an incoherent
policy. IncoherentPolicy selects two policy alternatives from an
wsp:ExactlyOne, which, according to our current translation is
forbidden. Note that Swoop displays an explanation of the
incoherence, which can aid in repairing the policy.

Policy Management for the Web WWW 2005

10 May 2005 33

In general, we get the following inferences out of the box:
1) policy inclusion (if x meets policy A then it also meets

policy B; a.k.a., A rdfs:subClassOf B);
2) policy equivalence (A owl:equivalentTo B);
3) policy incompatibility (if x meets policy A then it

cannot meet policy B; a.k.a, A owl:disjointWith B);
4) policy incoherence (nothing can meet policy A; a.k.a.,

A is unsatisfiable)
5) policy conformance (x meets policy A; a.k.a, x rdf:type

A)
Some care must be taken given the open world semantics of
OWL. For example, an OWL reasoner does not assume that
because it cannot prove that x conforms to policy A, that x does
not conform to policy A. It is unclear what the WS-Policy authors
intend, though a closed world assumption is not unlikely.
However, even if there is a closed world assumption on WS-
Policies, we can handle at least some of those cases by adding
explicit disjoint statements at translation time.
One futher reasoning service supported by Pellet, and integrated
with Swoop, is explanations for inconsistencies,[16] which can be
used to help debug policy incompatibility, incoherence, and the
like. As we add further explanation capability to our systems, this
debugging power will grow.
Thus we see that with a fairly simple mapping, we can use an off
the shelf OWL reasoner as a policy engine and analysis tool, and
an off the shelf OWL editor as a policy development and
integration environment. OWL can also used to develop domain
specific assertion languages (essentially, domain Ontologies) with
a uniform syntax and well specified semantics. We can also
experiment with extensions to WS-Policy, by using more
expressive constructs from OWL at the policy language, as well
as the assertion language, level. We can play with extensions
before having to write a yet another processor for them. Of
course, if it turns out that we really want to restrict ourselves to a
very inexpressive subset, then we may still want to build specific
reasoners and processors that are tuned for that sublanguage. But
there again, our tools can help us. Pellet does expressivity
analysis of ontologies, so can help determine what logic we are
really using and the price of extensions.
Furthermore, ontology development techniques can be useful for
policy development as well. Most human generate ontology
develop iteratively, with specializations added to the class tree
over time. Similarly, we can build up our policies from more
general ones. A general policy could be very restrictive, setting
tough guidelines for all of a companies policies.
Finally, given a similar style mapping for another policy language
(say, Features and Properties, described in the next section) we
can do policy analysis and integration across policy languages.

3. Other Policy Languages
In this section we provide a quick overview of the state-of-the-art
in web service policy specification, by looking at the policy
languages presented at [12]. To the best of our knowledge, they
are sorted by increasing level of expressivity, even though lack of
formal semantics and analysis hampered our effort to provide a
fully correct listing. The list follows:

3.1. The Platform for Privacy Preferences Project (P3P) [9]
enables Web sites to express their privacy practices in a standard

format that can be retrieved automatically and interpreted easily
by user agents. P3P user agents allow users to be informed of site
practices (in both machine- and human-readable formats) and to
automate decision-making based on these practices when
appropriate. According to [15], there exists a data-centric
relational semantics for P3P in which a P3P policy is modeled as
a relational database. This simple semantics allows us to express
P3P using RDF.

3.2. The Features and Properties architecture [2] originates
from SOAP 1.2, and was integrated into WSDL 2.0 in order to
support the SOAP-specific concepts. Afterwards the architecture
was further expanded in order to allow Features to be more
abstract. Simply put, a Feature identifies a piece of functionality,
identified by a URI. An example of a Feature would be
encryption. Properties are the parameters of a Feature, also
identifiable by a URI. For an encryption feature, property might
be the algorithm used, part of message encrypted, etc. Features &
Properties are similar to WS-Policy in terms of expressivity, with
one exception – they lack operators for combining policy
assertions. It is argued at [3] that adding a choose one/all
operators (called combinators) will prove to be useful in
expressing higher-level semantics combining multiple policies.

3.2. WS-Policy [13] provides a general-purpose model and syntax
to describe and communicate the policies of a Web service. It
specifies a base set of constructs that can be used and extended by
other Web service specifications to describe a broad range of
service requirements and capabilities. WS-Policy introduces a
simple and extensible grammar for expressing policies and a
processing model to interpret them. The policy assertions are
expressing using XML and the grammar itself is specified with
XML Schema.
By using OWL we increase the expressiveness of the WS-Policy
representation and it will simplify the interaction between any
new protocols on one hand, and WS-Policy and WSDL on the
other hand. By using OWL/RDF we do not need to focus on the
ways in which the policy is attached to the web service, instead
we can concentrate on analyzing the policy itself.
Also, WS-Policy uses an open content model on policy assertions
to provide extensibility, and the usage of OWL and RDF can
provide more expressiveness by way of subclass and subproperty
constructs – re-using of derived policy assertions.
[10] provides a comparison of XML and RDF in terms of
expressing WS-Policies. It also provides arguments for usage of
RDF to represent WS-Policy by describing how RDF meets
document merging and extensibility goals described in the WS-
Policy specifications. To support this, the paper presents an RDF
schema for representing web service policies upon which our
policies as instances mapping was built.

3.4. KaOS Policy and Domain Services [11] use ontology
concepts encoded in OWL to build policies. These policies
constrain allowable actions performed by actors which might be
clients or agents. The KAoS Policy Service distinguishes between
authorizations (i.e., constraints that permit or forbid some action)
and obligations (i.e., constraints that require some action to be
performed when a state- or event-based trigger occurs, or else
serve to waive such a requirement). The applicability of the
policy is defined by a class of situations which definition can
contain components specifying required history, state and
currently undertaken action. In the case of the obligation policy
the obligated action can be annotated with different constraints

Policy Management for the Web WWW 2005

10 May 2005 34

restricting possibilities of its fulfillment. KAoS services have
been extended to work equally well with both agent-based (e.g.,
CoABS Grid, Cougaar, SFX, Brahms) and traditional clients on a
variety of general distributed computing platforms.

3.5. WSPL
WSPL[14] is being developed at Sun Microsystems. The Web
Services Policy Language (WSPL) is suitable for specifying a
wide range of policies, including authorization, quality-of-service,
quality-of protection, reliable messaging, privacy, and
application-specific service options. WSPL is of particular
interest in several respects. It supports merging two policies,
resulting in a single policy that satisfies the requirements of both,
assuming such a policy exists. Policies can be based on
comparisons other than equality, allowing policies to depend on
fine-grained attributes such as time of day, cost, or network
subnet address. By using standard data types and functions for
expressing policy parameters, a standard policy engine can
support any policy. The syntax is a strict subset of the OASIS
eXtensible Access Control Markup Language (XACML [5],
discussed below) Standard. WSPL has been implemented, and is
under consideration as a standard policy language for use with
web services.

3.6. XACML provides a policy language which allows
administrators to define the access control requirements for their
application resources. The language and schema support include
data types, functions, and combining logic which allow complex
(or simple) rules to be defined. XACML also includes an access
decision language used to represent the runtime request for a
resource. When a policy is located which protects a resource,
functions compare attributes in the request against attributes
contained in the policy rules ultimately yielding a permit or deny
decision. It is a powerful language, able to also express first order
and higher order functions.

3.7. Rei [7] is a policy specification language based on a
combination of OWL-Lite, logic-like variables and rules. It
allows users to develop declarative policies over domain specific
ontologies in RDF, DAML+OIL and OWL. Rei allows policies to
be specified as constraints over allowable and obligated actions
on resources in the environment. A distinguishing feature of Rei
is that it includes specifications for speech acts for remote policy
management and policy analysis specifications like what-if
analysis and use-case management. As Rei is geared towards
distributed environments, it also includes conflict resolution
specifications like modality preferences or priority assignments
between policies or between individual rules of a policy.

Having produced a mapping for WS-Policy to OWL, we have
shown that also Features and Properties and P3P can also be
mapped, since they are less expressive than WS-Policy. We plan
to focus on the more expressive languages (WSPL, XACML,
Rei) in the future, to determine how much of them can be mapped
into OWL, or whether we must move to a more expressive
language (like SWRL), or out of first order logic altogether. We
believe that translation considerations for existing and used policy
languages should be a factor in future extensions to OWL.

4. Conclusion
We have presented a translation of the base formalism of WS-
Policy into OWL-DL and described how those translations can be
used for policy analysis, processing, and development. If our

translation is correct, we have provided a formal semantics for
WS-Policy. At worst, we have exposed some of the assumptions
and ambiguities about the current specification.
We have demonstrated that an OWL-DL reasoner provides useful
services for policy analysis, including policy containment,
incompatibility, conformance, and incoherence. We expect that
having such services available will raise the bar for policy engines
overall.
In our future work, we intend to provide a standard mapping of all
the current WS-Policy assertion languages with some structural
fidelity. We also plan to attempt translations of at least parts of
the other policy languages we described in order to get a more
precise sense of their expressivity. If they cannot be mapped into
OWL, we intend to isolate the incompatible expressivity in order
to determine whether there are reasonable extensions to OWL that
could accommodate it.
Finally, we intend to further develop our tools as WS-Policy
processing tools. We shall investigate the gap between general
purpose tools like Pellet and Swoop and things tuned for WS-
Policy. For example, our explanation facility might do better for
WS-Policies if it knew the characteristic structure of their
translations.

5. ACKNOWLEDGEMENTS
This work was completed with funding from Fujitsu Laboratories
of America- College Park, Lockheed Martin Advanced
Technology Laboratory, NTT Corp., Kevric Corp., SAIC,
National Science Foundation, National Geospatial-Intelligence
Agency, DARPA, US Army Research Laboratory, NIST, and
other DoD sources.

6. REFERENCES

[1] Anderson, A. H. An Introduction to the Web Services Policy
Language. Sun MicroSystems.
http://research.sun.com/projects/xacml/Policy2004.pdf

[2] Daniels, G. Comparing Features / Properties and WS-Policy.
W3C Workshop on Constraints and Capabilities for Web
Servies. Redwood Shoes, CA, USA, Oct 12 -13, 2004.

[3] Daniels, G. Features and Properties Musings. www-ws-
desc@w3.org mailing list, October 2003.
http://lists.w3.org/Archives/Public/www-ws-
desc/2003Oct/0144.html

[4] Dean, M. and Schreiber G. OWL Web Ontology Language.
Reference W3C Recommendation,
http://www.w3.org/tr/owl-ref/. Feb 2004.

[5] Godik, S., and Moses,T., eds. OASIS eXtensible
Access Control Markup Language (XACML) Version
1.1. Oasis Committee Specification, http://www.oasis-
open.org/committees/download.php/4103/cs-xacml-
specification-1.1.doc. 24 July 2003.

[6] Lassila, O. and Swick, R. Resource Description Framework
(RDF) Model and Syntax Specification. W3C
recommendations, WWW Consortium. Cambrigde,MA,
USA. Feb 1999.

Policy Management for the Web WWW 2005

10 May 2005 35

[7] Kagal, L. et al. A policy Language for a Pervasive
Computing Environment. In Collection, IEEE 4th
International Workshop on Policies for Distributed Systems
and Networks. June 2003.

[8] Pellet – OWL-DL reasoner,
http://www.mindswap.org/2003/pellet.

[9] Platform for Privacy Preferences Project.
http://www.w3.org/P3P/

[10] Prud’hommeaux, E. RDF for Web Service Assertions. W3C
Workshop on Constraints and Capabilities for Web Services.
Redwood Shores, CA, USA. Oct 12-13, 2004.

[11] Uszokand, A. and Bradshaw, J. KAoS Policies for Web
Services. W3C Workshop on Constraints and Capabilities
for Web Servies. Redwood Shoes, CA, USA, Oct 12 -13,
2004.

[12] W3C Workshop on Constraints and Capabilities for Web
Services. Redwood Shores, CA, USA. Oct 12-13, 2004.
http://www.w3.org/2004/06/ws-cc-cfp.html.

[13] Web Services Policy Framework (WS-Policy). http://www-
106.ibm.com/developerworks/library/specification/ws-
polfram/.

[14] Web Services Policy Assertions Language. http://www-
106.ibm.com/developerworks/library/ws-polas/

[15] Yu, T., Li N., and Anton A.L. A formal semantics for P3P.
ACM Workshop on Secure Web Services, October 29 2004,
Fairfax VA, USA.

[16] Parsia, B., Sirin. E., Kalyanpur, A. Debugging OWL
Ontologies, In The 14th International World Wide Web
Conference (WWW2005), Chiba, Japan, May 2005.

Policy Management for the Web WWW 2005

10 May 2005 36

Policy-based Access Control for Task Computing Using Rei
Ryusuke Masuoka, Mohinder

Chopra, Yannis Labrou,
Zhexuan Song, Wei-lun Chen

Fujitsu Laboratories of America
8400 Baltimore Avenue, Suite 302

College Park, MD 20740, USA
 +1 (301) 486-0398

{ryusuke.masuoka,
mohinder.chopra, yannis.labrou,

zhexuan.song,
sam.chen}@us.fujitsu.com

Lalana Kagal
Massachusetts Institute of

Technology (MIT)
Computer Science and Artificial
Intelligence Laboratory (CSAIL)

32 Vassar Street, Cambridge, MA
02139, USA

+ 1 (617) 253-2613

lkagal@csail.mit.edu

Timothy Finin
University of Maryland, Baltimore

County
1000 Hilltop Circle

Baltimore, MD 21250, USA
+1 (410) 455-3522

finin@umbc.edu

ABSTRACT
In this paper, we describe a policy-based access control
implementation for Task Computing using the Rei policy engine.

Task Computing lets ordinary end-users accomplish complex
tasks on the fly from an open, dynamic, and distributed “universe
of network-accessible resources” in ubiquitous computing
environments as well as those on the Internet.

The Rei policy specification language is an expressive and
extensible language based on Semantic Web technologies. The
Rei policy engine reasons over Rei policies in OWL and domain
knowledge to answer queries about the current permissions and
obligations of an entity.

To provide unobtrusive and flexible access control for Task
Computing, a framework was created in which several Rei policy
engines were endowed with Web Services APIs to dynamically
process facts from clients, the private policies of service providers,
shared policies, and common shared ontologies. The framework is
implemented and deployed for Fujitsu Laboratories of America
(FLA), College Park office and evaluated.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Systems

General Terms
Management, Design, Experimentation, Security, Human Factors,
Languages.

Keywords
Task Computing, Rei, Policy, Semantic Web, OWL, OWL-S

1. Introduction

As the World Wide Web evolves as a computing and network
infrastructure, policy management becomes crucial to provide

access control not only for information on the Internet, but
resources in general, including networked devices and Web
Services, in such diverse environments as ubiquitous computing
and grid computing.

This paper focuses on access control for end-users to resources in
ubiquitous computing environments. These resources are
described abstractly in OWL as services, and are mainly realized
as UPnP devices and simple Web Services. This focus of
resources in ubiquitous computing poses a different set of
requirements and problems than for information on the Internet. It
is not that one is more difficult than the other. For example, a
framework can leverage from the physical reality in ubiquitous
computing environments. But the very dynamic nature of
ubiquitous computing environments definitely offers new kinds of
challenges.

Our contribution is to add a flexible policy-based access-control
to ubiquitous computing and demonstrate its utility and
effectiveness in a ubiquitous computing application. Task
Computing (TC, [1][2][3][[4]]) is a user-oriented framework that
lets end-users accomplish complex tasks on the fly from open,
dynamic, and distributed “universe of network-accessible
resources” in environments rich with applications, devices, and
services. Task Computing provides many ways for users to
interact with these ubiquitous environments and applies Semantic
Web technologies, such as OWL (Web Ontology Language,
http://www.w3.org/2001/sw/WebOnt/) and OWL-S
(http://www.daml.org/servcies) as its core enablers. In each
environment, functions (devices/OS/applications) are virtualized
as services. Through discovery mechanisms such as UPnP, TC
clients find those services and obtain their OWL-S files as their
semantic service descriptions. With those OWL-S files, TC clients
let the end-users to manipulate (compose, execute, publish, etc.)
the services on the spot.

When started, the TC client dynamically finds the local services
on the computer on which it runs and pervasive services in the
sub-network the computer is on. UPnP is used for the service
discovery on the sub-network. When a local or subnet service is
discovered, the TC client downloads the appropriate OWL-S files
that represents its semantic service description. Using the OWL-S
descriptions, TC client such as STEER allow a user to compose
and execute the services. The user can also create new semantic
services dynamically by instantiating or composing other services.
For example, Task Computing enables a user to display a
presentation file from his mobile PDA or computer on the

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

Policy Management for the Web WWW 2005

10 May 2005 37

stationary room projector without connecting a VGA cable, even
if this is the first time the user has been in the room. In another
example, a user can print a presentation file from his laptop on the
printer provided in the room without configuring his computer, or
show a photo just taken with his digital camera on the photo
frame in the same room immediately and print it on a photo
printer without moving memory cards around, or, display the
current weather at an address in his PIM (Personal Information
Manager) on the projector with just a few operations of point and
click. Task Computing enables end-users to accomplish all of the
above and more through a simple graphical user interface to the
Task Computing environment. You can even use your own voice
to make those same things happen through a voice-based Task
Computing client, VoiceSTEER.
Rei is a policy specification language for describing different
kinds of policies in a wide range of application domains. The
main goal of Rei is to address the issue of governing autonomous
entities in constantly evolving distributed environments. Rei
provides specifications for describing declarative machine-
understandable policies enabling both policy enforcement and a
more normative approach where autonomous entities can decide
whether or not to fulfill the applicable policy.
Rei is represented in an extension of OWL-Lite ([6][8][9][10])
and can be used to describe policies over domain knowledge in
different ontology languages such as RDF, DAML+OIL, and
OWL. Though its classes and properties are represented in OWL,
Rei also includes logic-like variables giving it the flexibility to
specify constraints that are not directly possible in OWL e.g., the
uncle relation, the same age as relation etc. Rei models deontic
concepts of permission, prohibition, obligation, and dispensation
and supports speech acts such as delegation, revocation, cancel,
and request for dynamic policy modification.
As most entities in pervasive environments will have several
overlapping policies of behavioral norms, constraints, and rules
acting on them, they will be over-constrained. This means that
they cannot always satisfy all of the policies, but deviating too
much or too often has its consequences - loss of reputation,
penalty clauses, imposition of sanctions, etc. Rei provides two
mechanisms for handling these situations namely consequences
and meta policies. Rei allows consequences to be modelled as
'sanctions' so that autonomous entities or providers can reason
over them to decide whether or not to deviate from a certain
policy. Rei also allows meta policies to be used to resolve
conflicts. Rei models two main types of meta policies: (i) for
defaults and (ii) for conflict resolution to handle different
requirements of policies. Depending on the type of conflict
resolution required, the appropriate meta policy should be
selected. Some policies may want a more high level meta policy
and can use default behaviors or modality precedences. However,
for tighter control, priorities are more suitable but are tougher to
define and maintain.
In order to support policy development, Rei provides two forms
of policy analysis: use-cases (also known as test-case analysis)
and what-if analysis (also known as regression testing). The
policy engine includes analysis tools accessible via a Java
interface that can be executed by policy engineers to check the
consistency and validity of the policies and ontologies.
From the initial implementation of Task Computing Environment,
it was immediately apparent that it requires some kinds of access
control for the services because it makes so easy for the end-users
to use the devices and services dynamically found on the same

sub-network. In home network environment, it would not be so
much a problem as long as the network is firewalled from the
outside networks. But when Task Computing should be applied to,
for example, office or hospital environments where there are
many devices that should be protected from abuses by
unauthorized accesses.
To provide unobtrusive and flexible access control for Task
Computing, a framework is created with Rei policy engines
endowed with Web Services API to process facts from the client,
service's private policy, shared policies, and ontologies
dynamically. The framework is implemented and deployed for
Fujitsu Laboratories of America (FLA), College Park office and
evaluated.
In this paper, the motivation and design goals of the work are
given in Section 2. The implementation and test deployment of
Task Computing access control with the Rei policy engine is
described in Section 3. Then Section 4 describes how the above
design goals are met. Related work is discussed in Section 5 and
Section 6 concludes this paper.

2. Motivation and Design Goals

As mentioned above, the initial implementation of Task
Computing immediately revealed the need for access control of
services. A simple access control mechanism, which will not be
described any further here, was implemented in the early stage.
This mechanism leveraged the physical embodiment as devices of
many services in Task Computing and this mechanism is often
enough for a simple deployment of services based on devices, but
it had its limitations. It was inappropriate for large deployments of
dynamic services and clients, or for services without their
physical embodiments. Simple identity or role based access
control mechanisms were unable to meet the requirements of
these dynamic environments. A sophisticated policy-based
solution for Task Computing was necessary to cover such cases.
At the core of the solution, a way to express rule based policies
and an engine to process the policies were required. The Rei
policy specification language and Rei policy engine came as a
perfect match.

Rei is an expressive policy language based on Semantic Web
technologies. As Task Computing had already embraced OWL
and OWL-S as its core enabler, it made it easier to integrate many
aspects of Task Computing into the policy language. Specifically
Task Computing needs seamless inferences over policies, facts,
and ontologies. The Rei policy engine can combine dynamically
policies including delegations, OWL ontologies, and facts
described using ontologies and infer the access rights for users
and programs.

The dynamic nature of ubiquitous computing environments also
requires the policies to be defined not in terms of ID’s and roles,
but rules based on properties of entities such as users, devices,
and services. In the ubiquitous environment with often
unforeseeable entities, the access control should shift to rule-
based approaches using descriptions of entities involved.

In order to give enough flexibility, it necessitates the use of
mechanisms for updating the policies on the fly. Especially
delegation mechanisms, which Rei also supports, are imperative.
Users do let others use devices and services on their behalf or
temporarily in everyday life. If the system does not allow such

Policy Management for the Web WWW 2005

10 May 2005 38

flexibility, the users would be forced to drop the mechanism
totally or find a way to evade it.

We also deem it important that the system allows developers,
system administrators, and even end-users to specify the policies
in a natural and intuitive way. It would make the system very easy
to use if, for example, the system lets the user specify policy very
close to everyday languages and processes them in the way the
ordinary people would expect it to be processed. While the policy
language itself needs not to have everyday language aspects, a
policy language with high expressivity enables such a system by
allowing mapping the user’s policy specifications correctly into
the policy language.

Such considerations made the Rei policy specification language
and policy engine a natural choice for us.

On the other hand, we wanted to get leverage from the ubiquitous
computing environments as application areas of Task Computing.
It can be difficult to hand out credentials signed by appropriate
CA’s to the users. As it turns out in the next section, the process is
smoothly incorporated into the office check-in process and the
credential is copied on the physical memory device for the user
with the full Task Computing client on it. The credential is sent
by the user through the Task Computing client to the service to be
authenticated and consumed by the Rei engine.

When we design the access control for Task Computing
Environment using Rei, the following items are set as its design
goals.

1. Minimally obtrusive for users

2. Enable both centralized/distributed solutions

3. Allow multiple certificate authorities

4. Secure dynamic delegation

For the first point, it is always a trade-off between security and
ease of use. (You can create a perfectly secure system … just let
no one use it.). But with appropriate technologies and smart
deployment of the system, we can shift the balance, more security
with less obtrusiveness. If the access control is difficult or
cumbersome to use, it would kill the Task Computing experience.
It is also imperative to finish the policy calculation in a
reasonable amount of time. The access control is secondary
function to the main function. It is like putting the cart in front of
the horse if it takes longer time than the main function.

Secondly, we wanted to have both centralized/distributed
solutions possible because the access control deployments can be
different from one site to another. For some site, an IT department
might want to manage the policy centrally, thus requiring a
centralized solution. In some other cases, the end-user might want
to set some policy for a single device. It is preferable, for example,
the end-user can set the policy for the device at its initial
configuration. Such a distributed solution is often enough for a
small office. There is another aspect of centralized/distributed
solutions as to where the policy engine should run. In case of
resource-limited devices, there might be no choice, but to choose
the centralized solution in which the device accesses the policy
engine running on a different more powerful machine.

The third point is important when you consider the applications
for relatively open spaces such as shopping malls. By allowing
multiple certificate authorities in the framework, it can maximize

the chances that the user can use the service. Of course, the user
and the service need to agree on at least one common certificate
authority that they both trust, in order for authentication to happen.

The last point is crucial in order to make the access control
flexible. Sometimes one wants to override the default access
control to let someone else to use the service. It is necessary that
the person has the enough authority to do it and that it should be
done securely. But if the system does not allow such flexibility,
the user would eventually find the system useless or tries to find
ways to circumvent the access control.

3. Implementation and Test Deployment

We have ported the Rei policy engine to run in the Windows
environment because many of the Task Computing services are
provided by Windows-based systems. A Web Services API was
created for the Rei engine to facilitate its use in a highly
distributed environment. We incorporated the access control
based on the Rei policy engine into the “Pervasive Print” TC
service, which lets users print files remotely (without any printer
setup) to create the “Secure Print” service. The Credential
Creator software was produced to easily create a digitally signed
credential in the OWL format. We also created the Delegation
Manager software to let the users insert and/or remove delegation
statements (in the Rei format) into/from the shared policy site
securely over HTTPS.

The resulting system was deployed in the Fujitsu Laboratories of
America (FLA), College Park office. The Credential Creator was
installed on the desktop machine in the reception area, the
“Secure Print” service was installed on a computer with a printer
in the conference room along with the Rei policy engine. (Here
we had the “distributed solution” in the sense that the policy
engine is distributed to each service.)

We will explain the usage scenario first and then give the details
how it is realized.

STEER + Credential

REI Engine

Web Service

Facts
Policy

STEER-Stick

Figure 1. Deployment of Task Computing Access Control

The scenario goes like this (See Figure 1). Mohinder, a UMBC
(University of Maryland, Baltimore County) student, visits FLA,
College Park. Valerie, the Office Administrator of FLA, College
Park, greets Mohinder in the reception area.

Policy Management for the Web WWW 2005

10 May 2005 39

1. Valerie creates a STEER-Stick with credential for Mohinder.

STEER-Stick is a USB memory device with all the software
necessary to run STEER, a Task Computing client including Java
runtime along with the credential. The credential includes his
name, affiliation, status (‘’Visitor’’) and metadata of credential
(its creation date, expiration date/time, etc.), and the digital
signature signed with the FLA private key. The Credential
Creator software saves the credential in OWL format in the
credential folder of the STEER-Stick. It also saves an HTML file
for the human to check the contents of the credential.

 Mohinder runs the STEER using the STEER-Stick in his
laptop. STEER finds the “Secure Print” service dynamically
and show the service with a key icon.

The “Secure Print’’ OWL-S file states that an FLA credential is
required. (It can state that it requires one of multiple credentials.)
When STEER finds that the service requires a credential, it shows
a key icon for the service.

2. Mohinder tries to use the “Secure Print”, but he fails
because a “Visitor” is not allowed to use it.

Based on the “Secure Print” OWL-S file, STEER looks for an
FLA credential in its “credential” folder. When it finds it, it sends
the credential along with service invocation parameters in the
Web Service call.

“Secure Print” checks the digital signature of credential to make
sure it is valid. (So that facts in the credential are not modified.)
Then it uses these facts to determine if the caller has the authority
to use the service by the Rei policy engine, which is called
through Web Service API. The Rei policy engine determines that
Mohinder can not use the service as he is just a “Visitor” and
returns the result through its Web Service API. The service , in
turn, returns an error for the original Web service call with the
reason.

3. Mohinder asks Ryusuke to delegate the right to print.

Ryusuke uses the Delegation Manager software to assert a
statement to delegate the right to Mohinder by Ryusuke to the
FLA shared policy site securely.

4. Mohinder tries again to use the “Secure Print” and this time
he succeeds.

There is a statement at FLA Policy Site that Senior Employee has
a right to delegate the right to visitors. With the newly added
statement of the delegation, it enables Mohinder to print.

5. After that, Ryusuke revokes the delegation.

The delegation assertion created in the step 3 is removed from the
FLA shared policy site by using the Delegation Manager.
Mohinder can not use the service any longer.

Access control is determined based on the following elements:

 Facts provided by the client (authenticated by the digital
signature)

 Printer’s private policy
 FLA shared policy (and potentially other shared policies)
 Ontologies

The service can use multiple shared policies depending on its
configuration. Each time, these elements listed above are mixed to
determine the access control.
Figure 2 shows what happens behind the scene. The number given
in the figure corresponds to the numbered item in the scenario.
Shared policies and ontologies are cached and they are
downloaded only when they are updated.

Delegation
Manager

Delegator Client (STEER)

Print Service

REI Engine

Consult REI Engine

Delegate/Revoke
right

Modify FLA Policies

Call Print with the Facts

Download Print
Policies (private)

Download FLA
Policies (shared)

Print Policies

FLA Policy Site Ontologies Sites
Download Required
Ontologies

Save Credential
(1)(2, 4)

(2, 4)

(2, 4)

(2, 4)

(3, 5)

(3, 5)

Credential Creator

(2, 4)

Figure 2. What is Happening behind the Scene

Figure 3 gives parts of fact, private policy for the Secure Print
service, and the shared policy for FLA used in this scenario.
The scenario above centers around the value for “flaonto:Status”
in the fact. All pieces of information in the fact are digitally
signed and the digital signature assures its integrity. If any part of
it is changed, the facts can not be authenticated.
Another thing to note is that it has the expiration time as a part of
the credential’s metadata. If the time has passed this expiration
time, the “Secure Print” service will decline any request to print.
The Printer’s private policy states that it can be used by a senior
employee, but not by a visitor. Therefore Mohinder, who is a
visitor, fails to print at first.
The FLA shared policy states that a Senior Employee has the
right to delegate the right to use the “Secure Print” service (It is
not shown in Figure 3). When Ryusuke insert his delegation
statement (which is shown in Figure 3) using the Delegation
Manager, this enables Mohinder to use the “Secure Print”
because the service detects the update at the FLA Policy site and
downloads the new FLA shared policy (and because of the
statements that Ryusuke Masuoka is a Senior Researcher and that
a Senior Researcher is a Senior Employee in the ontologies).

Policy Management for the Web WWW 2005

10 May 2005 40

<!– Fact from Task Computing client -->
<rdf:RDF …>

<rdfs:label lang=en>Mohinder Chorpa</rdfs:label>
<flaonto:Name …>Mohinder Chorpa</flaonto:Name>
<flaonto:Expiry …>2004-08-23T23:05:28Z</flaonto:Expiry>
<flaonto:Status …>&flaonto;FLACPVisitor</flaonto:Status>
<flaonto:Affiliation …>UMBC</flaonto:Affiliation>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
…

</SignedInfo>
<SignatureValue>ZrbEVA7JWWGNbpqc…Jo6dDw=</SignatureValue>

</Signature>
</rdf:RDF>

<!– Printer Private Policy -->
…
<deontic:Permission rdf:about="&flapolicy;right_to_be_printed_on“

policy:desc="All senior employees have the right to print">
<deontic:actor rdf:resource="&flapolicy;var1"/>
<deontic:action rdf:resource="&flapolicy;printing_in_conference"/>
<deontic:constraint rdf:resource="&flapolicy;preOrSenior"/>

</deontic:Permission>
…

<!– Delegation Inserted (and Removed) in Shared Policy-->
<action:Delegation

rdf:ID=“Delegation2004-08-23T19:32:19ZRyusukeMasuoka">
<action:sender rdf:resource="&inst;RyusukeMasuoka"/>
<action:receiver rdf:resource="&inst;MohinderChorpa"/>
<action:content>

<deontic:Permission>
<deontic:action rdf:resource="&inst;ASeniorEmployeePrintingAction"/>

</deontic:Permission>
</action:content>

</action:Delegation>

Figure 3. Fact, Private Policy, and Shared Policy

The example given above is kept relatively simple for the sake of
easy understanding. The system as it is now can fully utilize the
expressivity which the Rei engine allows. For example, a scenario,
such as one in which a senior employee gives to a class of users
(ex. all visitors from UMBC on Jan 31st) the right to use a class
of resources (ex. all devices in the conference room), is possible.

4. Evaluation and Discussions

In this section, we discuss how we met the initial design goals set
forth in Section 1.

1. Minimally obtrusive for users

We tried to keep the additionally requirements for all the users
involved as little as possible.

We have created software tools such as Credential Creator and
Delegation Manager so that end-user needs not to write complex
OWL/Rei statements, but just to give essential information.

The credential creation process is integrated into an ordinary
office check-in process in which the Office Administrator types in
the visitor’s name and affiliation, selects the appropriate status
(selections created dynamically from an ontology) and the
expiration time in the Credential Creator GUI ,and hit the save
button. The digitally signed credential in OWL is automatically
created and saved in the appropriate folder of the STEER-Stick
USB memory device,.

The STEER-Stick includes a full Task Computing client, STEER,
on it and the user can run STEER from the STEER-Stick without
any installation.

STEER hides the details of using the secured services and shows
only essential information. Secured services are shown with key
icons so that the user knows that it requires appropriate authority
to execute it. When the execution fails because of the security
clearance, it will notify the user the reason. All the details are
handled behind the scene such as determining from the OWL-S
file if the service is secured and what kinds of credential is
necessary and sending appropriate credential to the secured
service.

On the service side, we found that the Rei policy engine needed to
be accelerated so as not to hamper the user’s experience.
Originally it took seven to eight seconds to finish the access
control calculation based on the fact, policies, and ontologies. In
general, caching answers does not help as we can not expect fact,
policies, and ontologies to remain fixed (especially facts). We
made various changes to the Rei policy engine to enable it to
produce answers to queries in less than one second.

2. Enable both centralized/distributed solutions

From the aspect of policy management, we can have the spectrum
between centralized and distributed solutions. One can put the
policies that should be kept private in the private policy while
policies that can or should be shared can be put in one of the
shared policies at the shared policy sites. Which shared policies
for the service to use is up to the service to decide.
From the aspect of policy engine, the Rei policy engine with Web
Services API allows very flexible deployment as long as the Rei
policy engine is accessible from the service by HTTP/HTTPS.
But the privacy of private policy is compromised to some degree
when the Rei policy engine is running on a different machine
because the private policy needs to be sent to the Rei policy
engine for the access control calculation.

3. Allow multiple certificate authorities

We allow the OWL-S file for the service to include the multiple
certificate authorities that the service accepts. On the other hand,
STEER looks into its credential folder for credentials from
compatible certificate authorities for the service and send the
credential along with the Web Services calls if found.
For example, Mohinder may carry two credentials, one from FLA
and one from UMBC in the credential folder. The OWL-S file of
“Secure Print” may state that it requires a credential from FLA or
8400 Baltimore Avenue Building (where FLA, College Park
office is located in). STEER selects the credential from FLA in
the credential folder to use “Secure Print” service.

4. Secure dynamic delegation

With the Delegation Manager software, it is possible for end-users
easily to insert (and later remove) the Rei delegation assertions
into the shared policy hosted at a Web server securely over
HTTPS. This gives flexibility often necessary in everyday usage
of the system.

In addition to the initial design goals, we would like to discuss
here about our decision not to make the Rei engine Web Services
discoverable dynamically as a semantic service as it is usually the
case for Task Computing Web Services. While it is easy to make
the Rei Web Service discoverable through, for example, UPnP

Policy Management for the Web WWW 2005

10 May 2005 41

and the service automatically starts using the Rei Web Service, it
can be a security hole simply doing that. The dynamically found
Rei engine needs to be authenticated and there is a bootstrapping
issue. It is also likely that the human service provider has a very
specific idea of which policy engine to use along with each
service.

5. Related work

Extensible Access Control Markup Language (XACML) [16] is a
language in XML for expressing access policies. This work is
similar to ours; in that it allows control over actions and supports
resolution of conflicts. However, as it is based in XML, it does
not benefit from the interoperability and extensibility provided by
Semantic Web languages. It also does not model speech acts or
handle conflict resolution across policies.

Lately there has been a significant body of standardization efforts
for XML-based security, such as WS-security, -trust, and -policy
at W3C, or SAML of the OASIS Security Services Technical
Committee, and the Security Specifications of the Liberty
Alliance Project. The standards support low-level security or
policy markups that concern formats of credentials or supported
character sets for encoding. They do not address semantic user- or
application-specific trust tokens and their relations. These
standards have been developed to support controlled B2B
applications where both client and service can be mutually
authenticated and recognized. These standards are not extensible
to more dynamic environments in which simple authentication is
not enough, but authentication on user-defined attributes needs to
be considered. For this, a semantic approach like we take in this
paper, is a possible solution.

KAoS is a policy language based in OWL [17][18]. This language
is similar to Rei in that it can be used to develop positive and
negative authorization and obligation policies over actions. KAoS
policies are OWL descriptions of actions that are permitted (or
not) or obligated (or not). This limits the expressive power, so
that there are policies that Rei can describe that KAoS cannot.
However, KAoS allows the classification of policy statements
enabling conflicts to be discovered from the rules themselves. The
Rei engine can only discover conflicts with respect to a particular
situation and cannot pre-determine them. However, Rei includes
run-time conflict resolution by supporting meta-policies.

The paper [19] presents an XML-based specification language,
which incorporates content and context based requirements for
documents in XML-based Web Services. It uses a role-based
access control model which simplifies authorization
administration by assigning permissions to users through roles.
Although it relates roles to permissions, there is no way to
dynamically change these roles or permissions. Using the
delegation module of REI we can change the policies dynamically
to adapt to the changes in roles or permissions.

6. Conclusion

It is our belief that security and access control should be natural,
flexible and minimally obtrusive for the end-users as they try to
accomplish everyday tasks. If not, the users will eventually find
ways to evade the mechanisms rendering them useless, at best,
and possibly counter-productive. It is also important to give

enough flexibility in the deployment aspect of security and access
control because their requirements and rules differ from one
site/office to another.

To that regard, we have been successful in adapting our flexible
access control framework to blend in an ordinary office
environment.

Future work includes:

 Discovery security
By making it so that only accessible services are found for Task
Computing client, it will make the whole system more secure and
easy to use.

 Service authentication
By using the OWL-S file of the service, the service notifies its
(shareable part of) policy to the client. It enables the client to
better determine if the service is executable in advance.

 Explanation and negotiation
The user would get frustrated if the system simply rejects his/her
use of certain resources without giving a reason. The system
needs to give out understandable explanation for the rejection if
asked. It should also be very useful if the system can provide the
information on what it requires in order to gain permission.

7. REFERENCES

[1] Masuoka, R., Parsia, B., and Labrou, Y., “Task Computing –
The Semantic Web meets Pervasive Computing -.” In D.
Fensel et al. (Eds.), “The Semantic Web - ISWC 2003,” the
Second International Semantic Web Conference (ISWC
2003), Sanibel Island, FL, USA October 2003 Proceedings,
LNCS 2870, 2003, pp. 866-881.

[2] Masuoka, R., Labrou, Y., Parsia, B., and Sirin, E.,
“Ontology-Enabled Pervasive Computing Applications,”
IEEE Intelligent Systems, vol. 18, no. 5, Sep./Oct. 2003, pp.
68-72.

[3] Song, Z., Labrou, Y., and Masuoka, R., “Dynamic Service
Discovery and Management in Task Computing,”
MobiQuitous 2004, August 22-26, 2004, Boston, USA, pp.
310 - 318.

[4] Task Computing Home Page, http://taskcomputing.org

[5] Lalana Kagal, Tim Finin, and Anupam Joshi, “Trust Based
Security for Pervasive Computing Enviroments”, IEEE
Communications, December 2001.

[6] Lalana Kagal, “Rei : A Policy Language for the Me-Centric
Project”, HP Labs Technical Report, 2002.

[7] Jefferey Undercoffer, Filip Perich, Andrej Cedilnik, Lalana
Kagal, Anupam Joshi, Tim Finin, “A Secure Infrastructure
for Service Discovery and Management in Pervasive
Computing”, The Journal of Special Issues on Mobility of
Systems, Users, Data and Computing, 2003.

[8] Lalana Kagal, Tim Finin, and Anupam Joshi, “A Policy
Language for Pervasive Systems”, Fourth IEEE International
Workshop on Policies for Distributed Systems and Networks,
2003.

Policy Management for the Web WWW 2005

10 May 2005 42

[9] Lalana Kagal, Tim Finin and Anupam Joshi, “A Policy
Based Approach to Security for the Semantic Web”, Second
Int. Semantic Web Conference (ISWC2003), Sanibel Island
FL, October 2003.

[10] Lalana Kagal, “A Policy-Based Approach to Governing
Autonomous Behavior in Distributed Environments”,
Dissertation, September, 2004.

[11] Grit Denker, Lalana Kagal, Tim Finin, Massimo Paolucci,
and Katia Sycara, “Security for DAML Web Services:
Annotation and Matchmaking”, Second Int. Semantic Web
Conference (ISWC2003), Sanibel Island FL, October 2003,

[12] Lalana Kagal and Tim Finin, “Modeling Conversation
Policies using Permissions and Obligations”, AAMAS 2004
Workshop on Agent Communication (AC2004), July, 2004,

[13] Pranam Kolari, Lalana Kagal, Anupam Joshi, and Tim Finin,
“Enhacing P3P Framework with Policies and Trust”, UMBC
Technical Report and under review, 2004.

[14] Anand Patwardhan, Vlad Korolev, Lalana Kagal, and
Anupam Joshi, “Enforcing policies in Pervasive
Environments”, International Conference on Mobile and
Ubiquitous Systems: Networking and Services, 2004.

[15] Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit
Denker, Tim Finin, and Katia Sycara , “Authorization and

Privacy in Semantic Web Services”, IEEE Intelligent
Systems (Special Issue on Semantic Web Services), 2004.

[16] S. Godik and T. Moses, “OASIS eXtensible Access Control
Markup Language (XACML)”, OASIS Committee
Secification cs-xacml-specification-1.0, November 2002.

[17] A. Uszok, J. Bradshaw, P. Hayes, R. Jeffers, M. Johnson, S.
Kulkarni, M. Breedy, J. Lott, and L. Bunch, “DAML reality
check: A case study of KAoS domain and policy services”,
International Semantic Web Conference (ISWC 03), Sanibel
Island, Florida, 2003.

[18] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate,
J. Dalton, and S. Aitken, “Policy and Contract Management
for Semantic Web Services”, AAAI Spring Symposium, First
International Semantic Web Services Symposium, 2004.

[19] Arif Ghafoor, James B. D. Joshi, Rafae Bhatti, and Elisa
Bertino, “XML-Based Specification for Web Services
Document Security”, IEEE Computer Society Press , 2004.

Policy Management for the Web WWW 2005

10 May 2005 43

Describing the P3P base data schema using OWL
Giles Hogben,

European Commission,
Joint Research Centre,

Via Enrico Fermi 1,
21020 VA, Ispra, Italy

+39 0332789187

giles.hogben@jrc.it

ABSTRACT

This paper describes use cases and requirements for a privacy
policy data schema. It describes problems with existing schemas
in relation to these requirements (P3P 1.0, P3P 1.1 and RDFS
schema for P3P). It proposes and motivates the use of an OWL
schema to describe the same semantics, which fulfils all the
requirements and may be used in a semantic web based privacy
and identity management context. It describes the advantages
which this gives to a policy evaluation engine based on such a
schema and describes some of the reasoning use cases addressed
in modelling the schema.

Modelling the schema using OWL appears simple at first sight,
because the entire schema can be constructed with OWL-Lite
predicates or using one custom predicate. However, the fact that
modal logical statements must be made about data types in the
schema (e.g. Organization x May Collect Data of type Y) makes
reasoning over the typing schema challenging. The paper also
looks at syntactic and semantic validation using the schema as
well as extensions and modifications to the vocabulary items
supported.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – abstract data types.

E.1 [Data Structures]: Distributed data structures, graphs and
networks.

General Terms
Standardization, Languages, Theory

Keywords
Policy engineering, P3P and policies, Semantic Web Groundings

This work was supported by the IST PRIME project; it
represents the view of the authors only.

1. Introduction
P3P [1] is a policy framework for describing web site privacy
practices using XML. The main body of a P3P policy is made up
of a set of statements about data collection practices. Each
statement refers to the practices claimed for a certain type of data,
described by "data elements" which are typed and validated
according to a special P3P data schema. The vast majority of
existing policies use the P3P Base Data Schema [2], the base

typing schema provided by P3P for this purpose. The exact
specification of this schema is outlined in [3] .

The P3P 1.0 base data schema is intended to provide a base set of
data types to cover the most common categories of personal data
about which P3P privacy policy statements might be made. The
schema also provides extensibility mechanisms for expressing
custom types. The fact that it is one of the only mechanisms to
offer this functionality for such a broad range of data types has
meant that the P3P data schema has also been adopted for several
other use-cases which were unforeseen by the P3P working group.

This paper shows how an OWL [4] based semantics can be used
in these use cases to fulfil many of the requirements that are
problematic for the P3P base data schema. The schema is
designed to fit into the policy architecture framework proposed in
"P3P Using the Semantic Web (OWL Ontology, RDF Policy and
RDQL Rules)" [5]
One important problem resolved by this paper is that P3P makes
statements about data types in the schema which use modal logic
(e.g. Organization x May Collect Data of type Y). This makes
reasoning over the typing schema challenging. The paper presents
a solution for achieving this using available OWL reasoning tools.

2. Use cases
Our motivation for creating an OWL data schema for privacy
policy languages was broader than the usage scenarios envisaged
for P3P and our schema is designed to cover scenarios envisaged
for both P3P and nascent enterprise privacy management
standards such as EPAL [6] and the technologies being developed
by the PRIME project [7], as well as to satisfy identity
management requirements such as those for automated form
filling and pseudonym management. In practice, the P3P data
schema has already been used beyond its design remit in many
projects [7],[8],[9] and it is therefore an urgent need to provide a
schema which can satisfy these broader requirements.

The schema we propose should allow the description of data types
in the following policy contexts:

a. Requesting data or credentials (the auto-form filling/Xforms
[10] scenario). The data typing schema is used to describe the
type of data to be inserted into a form field.

b. Describing data or credentials (metadata). The data typing
schema is used to describe data or credential instances.

c. Describing data practices (P3P type scenario) according to data
types. The data typing schema is used to describe types of data to
which certain data handling practices may be applied.

Policy Management for the Web WWW 2005

10 May 2005 44

mailto:giles.hogben@jrc.it

d. Application of access control rules. The schema is used to
describe types of data to which groups of access control rules
should be applied. For example it should be able to describe the
type used in the natural language rule: "Do not give user emaill
addresses to third parties".

3. Requirements on a privacy and Identity
Management data schema
An analysis of the above use cases has led to the following
specific requirements:

1. Data types must describe data (i.e. the object is the
information), not properties of individuals. This is needed to
allow for types of data which are personal but do not
necessarily apply to individuals. It is also correct
semantically as data handling policies for example, make
statements about data and not about individuals and their
properties.

This implies that data types must be modelled as classes
rather than properties. So for example "email" means "data
of type email" rather than "the email property of user x".
This allows the model to be centred around statements about
data collection practices rather than statements about
individuals and their properties. It is more difficult to use
OWL to provide meta-information about properties than it is
about classes. The semantics of properties also breaks down
when it comes to data types such as "user". If user is a
property, what does it refer to? [11] breaks the schema down
into classes and instances so that "user" is a class, while
"prefix" is the value of a property, but this seems
unnecessarily complex as all the types in the P3P schema can
be described as classes of data.

2. The schema should distinguish between abstract (cannot be
instantiated) and concrete types. This gives the possibility to
use the schema for data and credential requests such as
automated form filling. It is not possible to use the P3P base
data schemas for automatic form requests because it does not
satisfy this requirement. But if types are designated abstract
and concrete status, then an application can ask for say "user,
online data" and a reasoning engine can drill down the
schema to dig out the concrete types "home page, email
address etc…

3. It should be easily possible within the semantics to apply
meta-data both to instances of data types and to the types
themselves. This requirement is derived from the need both
to describe data literals, and to make statements about
classes of data when describing data handling practices. This
is another strong reason to model data as classes and not as
properties, because it is much more natural to apply metadata
to classes rather than to properties.

4. The schema should be able to describe both literals (data
submissions) and classes of data.

5. The semantics of the OWL base data schema should not
conflict with any semantics which can be inferred from the
P3P Base Data Schema unless this can be shown to be
inconsistent with other requirements. The vocabulary used in
the P3P Base Data Schema semantics is based on a standards
process and thereby represents a consensus on the actual data
types required for describing most data. Although the syntax

and semantics is poorly expressed, the actual taxonomy
represented has considerable value.

6. The number of classes defined should be minimized. As with
any data model, redundancy is to be avoided and the
description of classes should be as normalized as possible.

7. The schema should provide validation functionality for
allowed data types and for the syntax of instances of a
designated type. If the schema is to be used for typing
instances, it is natural to provide syntactic validation
functionality.

8. The schema should use standardized, well-defined syntax. In
order to foster adoption.

9. The schema should have a well-defined semantics. This
makes it easy to apply the schema to new use cases.

4. Existing data schemas in relation to
requirements
4.1 P3P1.0 base data schema
Some literature exists outlining problems with the Base Data
Schema [11],[12]. [12] cites the over complexity of the syntax
and proposes an XML schema version of the syntax which has
now been incorporated into the P3P1.1 working draft [13].

In relation to the above requirements, the P3P1.0 data schema has
the following specific problems:

1. (Requirement 2) It does not distinguish between abstract and
instantiatable types.

2. (Requirement 7.) There is no provision for validation of
instance data.

3. (Requirement 8) The schema uses a highly complex and
obscure custom syntax which:

a. Does not use mechanisms available in XML syntax, which
are commonly used to model semantics. For example it does
not use nesting to indicate subclass or other class
relationships, but rather a convoluted custom syntax
involving string matching.

b. Is not well defined – the syntax used for defining the
relations between allowed data types can only be deduced by
examining the base data schema and examples. It does not
follow directly from the specification document. To take one
example out of several:

Data Structures are abstract types (for example "POSTAL")
which appear in the schema, but are never actually allowed
as types in data elements. They serve to group concrete
elements together. Nowhere in the specification document is
it stated that in a data schema, data structures refer to their
child elements by parsing the data element name, splitting it
by "." delimiters and then taking the first token!

Another example is that, according to [1], the categories of
the data schema (broad classes of data types) follow a
"bubble-up rule". The meaning of this phrase is not precisely
explained in the P3P specification, but by examining the base
data schema, one can deduce that it means data types which
can be expanded into further structures must inherit any
categories which are valid for those structures. In fact,

Policy Management for the Web WWW 2005

10 May 2005 45

however, not all the categories quoted in the P3P base data
schema do follow a "bubble-up rule". For example, the
postal.name data structure is not (according to the official
specification [2]) assigned to the category demographic of its
child data structure, personname prefix.

Many of these problems were not picked up because the
syntax is so obscure.

4. (Requirement 9) The semantics is also not well defined.
There is a confusion between classes of data and properties
of individuals. For example, "user.employer" :"Name of
User's Employer" seems to model an object (the user) and its
properties. But "dynamic.cookies" "Use of HTTP Cookies"
models an abstract class of data (dynamic.cookies) and not
the "cookies" property of a "dynamic" object. Furthermore
the specification does not define whether syntax such as
"user.email" is meant to represent a set of user's email
addresses – or the intersection of the class of user data with
the class of email data. This has important implications when
trying to describe instance data.

Furthermore the semantics of the dot relationship between
the data types is not made clear. The specification says that
elements "include" other elements, implying that the relation
is equivalent to "subclass" but elements are also included by
several disjoint classes, making this incoherent. It is one of
the aims of this paper to make clear the exact semantics of
the base data schema in order to model it using OWL.

4.2 The P3P 1.1 Data Schema
The P3P 1.1 Data Schema (still in draft at the time of writing)
[13] addresses some of the problems outlined in 4.1

a. The P3P 1.1 Data Schema prescribes a standardized XML
syntax for describing the relationships between data
elements. Abstract "data structures" are abandoned, and
relationships are described simply by nesting tags within
each other. Custom schemas can be created by referencing
another XML schema.

b. A more precise semantics for the elements can also be
derived from the specification of this document. That " for an
element to be defined as an allowed child of element
<A> means if the policy states that it may collect data of
type <A>, then it can also be taken to state that it may also
collect data of type . "

The use of XML rather than description logic syntax is however
fundamentally limited because

a. XML semantics is only informal and is based on a
questionable interpretation of its syntax.

b. In practical terms, semantics expressed using a custom
interpretation of XML syntax such as in the P3P 1.1 Data
Schema cannot be interfaced with reasoning engines in the
way that RDF + OWL can. Much of the utility of the data
schema is lost because reasoning is proceduralized in
program code which then cannot be reused.

c. Since the structure of the schema is not well suited to
representation as a tree (as opposed to a directed graph), a
custom syntax has to be used to represent the structure.

4.3 The RDFS Schema for P3P
[14] is a previous attempt at producing a P3P data schema using
Description Logic syntax (RDFS). The RDF Schema for P3P
models data types as properties and describes a different class for
every possible combination of basic data types. While it does
provide a well-defined "p3p:extends" relation between data types,
it also describes all possible properties created by this extension
relation. This is highly redundant as the extension relation is then
contained in the syntax of the class names. It also has over 350
classes of data instead of less than 80 classes which are used to
compose these.
Furthermore, the definition of the extends relation as "Extends
another dataElementComponent" suggests a parallel with object
oriented design, which is not consistent with the semantics. (Does
a user's email extend the properties of a user?).
Finally, the RDFS schema's use of properties rather than classes
does not fulfil requirement 1.

5. Modelling Class Relationships in OWL
OWL provides a syntax which fulfils all the above requirements.
In using OWL, we implement the base data schema semantics in
the context of a semantic web enabled privacy architecture as
described in [5]. We chose OWL instead of other object oriented
modelling languages because it gives a standard XML based
syntax which provides the functionality required by the semantic
web based architecture in which the schema is used.

5.1 Reasoning use cases
We begin by describing a reasoning use case and then go on to
show how this can be implemented using an OWL-based
semantics which accurately reflects the intended semantics of the
P3P1.0 base data schema.
Identity management and access control systems typically need to
reason over policies or requests for broad data types which
correspond to specific data types in a store. Some important
reasoning use cases are as follows:
5.1.1. A typical statement of collection practices specifies that the
service may collect any data which is in both User and Name
classes (i.e. specializing Name as a User, not a Business, name)

The diagram re
deduce that this

User

Name

Prefix

SVFO SVFO

SVFO SVFO

Employer

Given

O

Policy Management for the Web WWW 2005

10 May 2005
Figure 1. Classes related by SVF
presents this scenario. The reasoner is required to
 implies that the service may also collect the data

 46

classes Given and Prefix (concrete types are filled in black,
inferences dotted lines).
5.1.2. A policy states that a company collects any data of type
User, whereas a preference rule refers to protecting Online data.
The reasoner needs to infer that if a service might collect User
data, it might also collect Online data.
5.1.3. A policy gives sensitivity ratings to data types which
determine their release by an identity management policy. The
reasoner selects the type with the maximum or minimum rating in
a given context.
Formally speaking, 5.1.1 and 5.1.2 require a system of modal
logic since it is describing possibilities. However, we show below
that it is possible to produce the required entailments using an
ordinary propositional logic system such as prolog.

5.2 Modelling the entailments using the
structure of the P3P 1.0 Data Schema
The P3P1.0 specification states: "P3P1.0 Data elements are
organized into a hierarchy based on the data element name as
specified by the data schema. A data element automatically
"includes" all of the data elements below it in the hierarchy. For
example, the data element representing "the user's name"
includes the data elements representing "the user's given name",
"the user's family name", and so on. Thus the data elements
user.name.given, user.name.family, and user.name.nickname are
all children of the data element user.name, which is in turn a
child of the data element user."
It is important to note that the exact meaning of "includes" here is
not specified. It appears to mean "subclasses" but, if one examines
the structure and semantics of the schema, this cannot be the case
because data elements such as personname are used as part of
disjoint classes such as User and Business.
Data schemas often need to reuse a common group of data
elements. P3P 1.0 data schemas support this through named data
structures. A data structure is a named, abstract definition of a
group of data elements. The name of the data structure itself (e.g.
postal) is never actually used in a data element. We quote the P3P
1.0 Specification's example:
<DATA-STRUCT name="date.ymd.year"
 short-description="Year" />
<DATA-STRUCT name="date.ymd.month"
 short-description="Month"/>
<DATA-STRUCT name="date.ymd.day"
 short-description="Day"/>
The structure of the P3P base data schema is, as [11] correctly
points out, not a forest, but a semi-lattice, as elements are used
repeatedly in different contexts. Figure 2 below is a Venn diagram
showing a fragment of the schema classes, which illustrates the
relation that holds between the data elements. The figure shows
the Classes User and ThirdParty, which both include some (>1)
values from Cert, Personname, Bdate and Gender.
All data elements in the P3P base data schema which are
"included" are in fact related as shown. That is if A "includes" (B
and C) then A contains some values from B and some values from
C and no other values unless otherwise stated (note that in fig 2,
User is shown outside of Cert, Personname etc… because it also
"includes" other data elements.)

5.3 OWL semantics
If we model all data elements as classes of data (as shown in
figure 2), then a single relationship, "SomeValuesFromOnly" can
be used to define the entire P3P base data schema using OWL.
In formal set theoretic notation, then, we wish to express a
relation R between three classes A, B and L (as shown in figure
2), where L is an RDF collection of classes:
If A <R> L then,

(
L
m

I
c
i
m
s
N
d
h
h
a
U
W
L

Thirdparty

GenderCert Bdate Personname

User

m

Policy Management for the Web WWW 2005

10 May 2005
Lli∈∀ ,)(liAA ∩= U

and

A is the union of the intersection of A with each member, li, of
, and no intersection is null). Or alternatively, in terms of class
embers,

n
l
s

t

l

{};, ≠∩∈∀ liALli

))((, lAiiLl ∩∈∃∈∀
and
i
a
o

Figure 2: Fragment of schema classes as Venn Diagra

formally, this means that if A <R> L, where L is a list of
asses, then A is made up of some values from every class which
 a member of L and no other values. For example suppose L is
ade up of Login, Name, Bdate and Gender. Then suppose we
ate that (User <R> L), then User is made up of Login data,
ame data, Bdate data and Gender data. Note that the Venn
agram does not show all the classes in User and therefore User
s some values not in Login, Name, Bdate or Gender. Note
wever, that these classes are not subclasses of User data as they

so share members with other classes which are disjoint from
ser.
e found that the relation <R> can in fact be expressed in OWL-

ite using the following syntax:

laLliAaa ∉∈∀∈¬∃ ,,,

 47

<owl:Class rdf:ID="A">
<owl:equivalentClass rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="&rdf;type" />
<owl:someValuesFrom rdf:resource="#B" />
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="&rdf;type" />
<owl:someValuesFrom rdf:resource="#C" />
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

This uses a restriction on the property "type" to say that some the
class A is made up of some values of type B and some values of
type B. The equivalent class predicate ensures that there are no
other values included. Using this syntax, in combination with
rules defining typical inferences to be made over the class graph
for various policy predicates, we found that all the necessary
deductions can be made. In order to increase reasoning efficiency,
we decided to abbreviate the above syntax to the equivalent
syntax:
<owl:Class rdf:ID="A">
 <customNS:SVFO rdf:parseType="Collection">

 <C/>
 </customNS:SVFO>

</owl:Class>

(SVFO stands for "Some Values from Only", which is an
abbreviation of the relations expressed in OWL-Lite above
applying to a list of objects)
These two syntaxes are equivalent and the second is only a
performance enhancement. We do not therefore specify the use of
one syntax preferably to the other if performance considerations
are addressed in some other way (e.g. introducing custom
procedural code into reasoning engines).
Furthermore, as in P3P1.1, we have also removed the "data
structure" names such as "postal" which are never referred to and
therefore complicate the schema unnecessarily. Structural
information can be included in labels if required for readability.
The whole schema hierarchy is then modelled using relations such
as:
<owl:Class rdf:ID="User">
 <customNS:SVFO rdf:parseType="Collection">
 <Personname/>
 <Cert/>
 ……
 </customNS:SVFO>

</owl:Class>

<owl:Class rdf:ID="Personname">
 <customNS:SVFO rdf:parseType="Collection">
 <Given/>
 <Prefix/>
 ……
 </customNS:SVFO>

</owl:Class>

Note that the categories of the base data schema can also be
modelled using this syntax, since they are just another class to
which some of the other data types stand in relation SVFO. The
syntax for integrating categories is more succinct and readable
than other syntaxes because it is only necessary to list the
categories and their allowed SVFO relations. The categories then
stand as an orthogonal system to the main hierarchy of types.
For example,

 <owl:Class rdf:about="#Political-data-category">

 <customNS:SVFO rdf:resource="#Cookies"/>

 <customNS:SVFO rdf:resource="#Miscdata"/>

 <rdfs:subClassOf rdf:resource="#Categories"/>

 </owl:Class>

6. Concrete and abstract types
Many applications need to know whether a data type can be
instantiated or not. For example if an application requests "User
data", this cannot be instantiated and the application must first
derive the concrete types inferred from the request. For this
reason, all concrete classes are designated as type Instantiatable.
If a type is not designated as instantiatable, then it is assumed to
be abstract.

7. Shortcut classes
In order to abbreviate the syntax of typing instance data, we
provide a set of shortcut classes for all possible instantiatable
classes. For example for data of type User, Name and Given, the
RDF syntax for typing an instance would be very verbose, so we
define the class
<owl:Class rdf:ID="User.Name.Given">
<rdf:type rdf:resource="#Instantiateable"/>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#User"/>
<owl:Class rdf:about="#Name"/>
<owl:Class rdf:about="#Given"/>
</owl:intersectionOf>

</owl:Class>
These classes do not add anything to the semantics of the
ontology, but make it quicker and easier to type instance data and
to reason over the type ontology.

8. Referencing the schema from privacy
policies

There are 3 main use cases for referring to types from the schema
expressed using this syntax

1. Requesting a type – in a privacy negotiation between an
access control system and requester, the access control
system may require information or credentials. It therefore
needs to send hints as to the credentials required. For
example a web service may require a certain certificate in
order to allow access to a client. In this case, the service
must be able to provide hints to the client as to what is
needed to get authorization to use the service.

This can be expressed using the following syntax

1. Requesting typed data (Entity requests the data specifying the
user's name).

<Entity>
<requests-data-types>
<rdfs:Class>

<rdfs:subClassOf rdf:resource="User"/>
<rdfs:subClassOf rdf:resource="Name"/>

</rdfs:Class>
</requests-data-types>
</Entity>

Policy Management for the Web WWW 2005

10 May 2005 48

(Or shorcut class syntax can also be used – see
Sec 7.)

2. Typing an instance (Entity Submits data of type User's Given
Name). This is expressed using the following syntax:

<Entity>
<hasData>
 <User.Name.Pseudonym>
 <rdf:value>Pseud1</rdf:value>
 </User.Name.Pseudonym>
</hasData>
</Entity>

3. Describing a practice carried out on a data type (Entity
collects any values which are of type User and Name i.e. the
class which is the intersection of both these classes)

<Entity>
<collectsAny rdf:parseType="Collection">
<rdfs:Class>
 <rdfs:subClassOf rdf:resource="User"/>
 <rdfs:subClassOf rdf:resource="Name"/>
</rdfs:Class>
</ collectsAny>
</ Entity>

The following points are worth noting in relation to this syntax:

• Each of these descriptions uses a different semantic to
describe the operation on the data, but the data types are
always referred to in terms of classes from the ontology.
That is using rdf:type or rdfs:subClassOf.

• In order to express a specific type, it is often necessary
to use multiple type declarations. For instance a name
may be a User name or a Business name so in the data
request description, it is declared as being both of type
User and Name to make clear this specialization.

• As discussed in section 7, the predicates "collectsAny"
and "requests-data-type" are in fact modal predicates
and effectively convert DataClassX into a prototypical
class representing all possible classes satisfying the
subClass properties. This somewhat contradicts the
formal semantics of OWL, however it will be shown
that the correct deductions can still be derived using
prolog style rules to extend the OWL semantics.

9. Inferencing over the schema
There are many possibilities for customized reasoning over such a
schema, as discussed in section 5.1. We discuss below how the
reasoning use case 5.1.1 (and implicitly also 5.1.2) may be
implemented. These cases are key to each of the policy use cases
described in section 2. This solution has been implemented and
tested using the Jena API [15].

9.1 Deriving types of data collected or
requested from broad types.
The relation "SVFO" (someValuesFromOnly) defined above
specifies a directed graph which has a tree structure. Figure 3
represents a typical statement about collection practices as
described in 5.1.1 (expanding the possible types of Name data).

The policy
both User a
a Business
temporary
deduce tha
service m
(concrete t
Generally
DataClassX
from a P3P
it is also tru
X mayColl
The prope
converts D
possible cl
correct ded
There are
this contex
1. The rea
which may
the SVFO
the examp
may collec
DataClassX
stand in rel
graph belo
Using a t
involves a
order to d
not User in
not have
subclass. T
functor.
2. The con
rule premi
subClass ?
premises, w
marker trip
This is a w
3. Finally,
true that if
from Z, the
some valu

Entity

CollectsAny
DataClassX

User

Name

Given Prefix

SVFO SVFO

SVFO SVFO

subClass

Employer

h

Policy Management for the Web WWW 2005

10 May 2005
Figure 3: Data Handling Directed Grap
 states that the service may collect any data which is in
nd Name classes (i.e. specializing Name as a User, not
, name) – we give the elements of this class the
name DataClassX. The reasoner then is required to
t "Service may collect DataClassX" implies that the

ay also collect the data classes Given and Prefix
ypes are filled in black, inferences dotted lines).

speaking, if X mayCollect DataClassX where
 is some subClass of A (This is a typical statement
 policy), then if A <SVFO> B and B <SVFO> C then
e that:

ect DataClassX where DataClassX subClass of C
rty mayCollect is a modal predicate and effectively
ataClassX into a prototypical class representing all
asses satisfying the subClass properties. However the
uctions can still be derived using prolog style rules.
3 important problems that a reasoner must address in
t:
soner must return that DataClassX (the class of data
 be collected) is a subClass only of the lowest node in
hierarchy which DataClassX is already a subclass of. In
le then, the reasoner must not deduce that the service
t Employer data. Therefore it cannot simply return that
 is a subclass of – (all classes to which User and Name

ation SVFO to). I.e. the reasoner must only expand the
w Name but not below User.
ypical OWL reasoner, this is impossible because it
form of negation (or "Unsaid within the context"). In

etermine to expand the SVFO child nodes of Name and
 the above example, it must determine that Name does
any SVFO children of which DataX is already a
his can only be done using a forAll(not…) type rule

clusion (DataClassX subClass Given) invalidates any
ses searching for Unsaid((Name SVFO ?x), (DataX
x)). This means that the conclusions invalidate the
hich is nonmonotonic reasoning. This is solved using

les, which tell the reasoner to ignore conclusion triples.
orkaround which forces the reasoning to be monotonic.
transitivity does NOT hold for SVFO. It is not always
 X has some values from Y and Y has some values
n X has some values from Z. For example if (User has
es from Only Name and Employer) and (Name has

 49

some values from only Given and Prefix), we cannot deduce that
(User has some values from Prefix), because the some values that
User has from Name may not be any of those that Name has from
Prefix.
What we need from such a property however is the following:
If and only if a service may collect any data of classes Given and
X, and Given is in the relation SVFO to class X, where X is
relation SVFO to class Y then the reasoner should also return that
the service might collect any data in class Y. (a kind of
conditional transitivity for SVFO).
All these requirements can be met within the limits of acceptable
performance using the proposed OWL ontology in combination
with prolog style rules. We used the Jena inference libraries to
derive these inferences on a sample policy. The following two
Jena rules correctly expand the types based as described above
(we have abbreviated the name space declaration for brevity). The
question mark syntax indicates universal quantification and all
triples are ANDed in the premises and conclusions:
Rule 1. The following complex rule ensures that the reasoner
deduces that A is a subclass of SVFO child nodes of any class, X
such that N requests-data-types A and A subClassOf X where
there is no class Y such that X <SVFO> Y (problems 1 and 2.)

[(?N ns:mayCollect ?A),

(?A rdfs:subClassOf ?X),

unSaidSpecial(?A,ns:someValuesFrom,rdf:type,?X)

->

[r3:(?A rdfs:subClassOf ?E)

(?X rdf:type ns:marker)

<- (?X ns:someValuesFrom ?E)]]

Rule 2. The following rule ensures that all SVFO children of a
class are returned as being of the same as the policy node, as long
as they have been previously marked using the second rule
(problem3).
[(?A rdfs:subClassOf ?D) <-

(?A rdfs:subClassOf ?B)

(?B rdf:type ns:marker)

(?B ns:someValuesFrom ?C)

(?C ns:someValuesFrom ?D)

]

The Rule builtin, unSaidSpecial provides the required negation
functor described above (problem 1) and is defined as follows:

unSaidSpecial(A,P,Q,X)

True iff for all(Y), (X,P,Y) there is no triple st (A,Q,Y)
Note that using the shortcut classes (see sec 7.), this reasoning
step can be performed much more simply for the case of finding
instantiatable types, however for the case of matching preferences
without the benefit of shortcut classes, this reasoning is still
necessary.

10. Validation using the OWL format
As well as reasoning functionality, most applications require
some validation functionality. This is of two kinds:

10.1 Synactic validation
This is available for concrete types such as "email". For example
the schema can specify that the concrete type email must contain
an @ sign – this can then be used to validate form entries for
example. This is achieved simply by specifying the rdfs:range of
instantiatable types described by the schema as being over an xsd
datatype.
e.g.

<rdfs:range rdf:resource="&xsd;dateTime"/>

This example shows a builtin data type. OWL does not specify a
mechanism for referencing user-defined xsd data types, but it
does not prohibit their usage. The OWL specification has this to
say about the question of user defined XML schema datatypes:
"Because there is no standard way to go from a URI reference to
an XML Schema datatype in an XML Schema, there is no
standard way to use user-defined XML Schema datatypes in OWL.
"
If we specify a mechanism for referring to custom data types in a
resource, we are therefore able to define a namespace containing
syntactic validation constraints on the concrete types for the OWL
data schema.
For example the following could be used to validate an email
address:
<rdfs:range rdf:resource="&PII-DS-
XML;emailAddress"/>

Can be specified to refer to the simpletype in the schema as
follows:
<simpleType name='emailAddress'>
 <restriction base='duration'>
 <pattern value='\w*@\w*\.\w*((\.\w*)*)?'/>
 </restriction>
</simpleType>

10.2 Semantic validation
A data type assignation breaks semantic validation rules if it
refers to a type of data which cannot exist. OWL is not a language
which is well adapted to making negation based statements of this
kind. However, we have added disjointness relations for classes
which should not be assigned simultaneously to data types (i.e.
they have no common values). For example if a policy describes a
class which is a subclass of both User and Business this should be
flagged as invalid. More sophisticated semantic validation
constraints may be added later. for example, a user's login can
have only one value. This may also involve the use of custom
rules within the reasoner module.

11. Changes to the P3P data schema
vocabulary
Based on input from other researchers, we have also altered the
available classes of the P3P data schema. For example, the
following alterations have been made.

1. Name is a single class rather than dividing it into user
name and business name. It is then specialized using
business and name classes.

2. We have added classes corresponding to fields in
electronic credentials,for example electronic identity
card, drivers' licence and passport fields.

Policy Management for the Web WWW 2005

10 May 2005 50

3. We have taken into account recommendations on
identity document fields given in the recent ICPP study
on identity management systems [16].

4. The techniques used to model credential metadata have
also added other classes and predicates, which are out of
the scope of this paper. For example we have added
classes for describing proof methods for assertions
made by credentials which fit into the typing schema.

12. Conclusion
OWL can be used to satisfy the requirements on data schemas for
privacy and identity management policies within and beyond the
use case scenarios of P3P. Some modification of the rulebase for
reasoning over OWL is needed to deal with the modal "may
collect values from" and "requests values from" predicates
required by these scenarios, but this is possible using standard
semantic web libraries. OWL data schemas can also provide
required type validation functionality.

13. REFERENCES
[1] Platform for Privacy Preferences Specification, Cranor
et al. ,Platform for Privacy Preferences, W3C
Recommendation, http://www.w3.org/tr/p3p
[2] P3P Base data schema, part of W3C Recommendation on
P3P, http://www.w3.org/TR/P3P/base
[3] Cranor et al. P3P Base Data Schema specification,
http://www.w3.org/TR/P3P/#Data_Schemas
[4] Web Ontology Language, W3C recommendation, see
http://www.w3.org/TR/owl-semantics/
[5] Giles Hogben, P3P Using the Semantic Web (OWL Ontology,
RDF Policy and RDQL Rules), W3C Working Group Note 3
September 2000, http://www.w3.org/P3P/2004/040920_p3p-
sw.html

[6] Powers, C., Schunter, M., Enterprise Privacy
Authorization Language (EPAL 1.2), W3C Member
Submission 10 November 2003,

http://www.w3.org/Submission/EPAL/ (for references to
P3P data schema, see http://www.w3.org/2003/p3p-
ws/pp/ibm2.html)

[7] Privacy and Identity Management in Europe, European
Research Project, see http://www.prime-project.eu.org
[8] Claus,S. and Doring,S. P3P Based Negotiation of Personal
Data, Technische Universitat Dresden, Fakultat Informatik, D-
01062 Dresden, Germany
[9] Electronic Commerce Modeling Language (ECML),
http://www.faqs.org/ftp/rfc/pdf/rfc3505.txt.pdf
[10] Eds Dubinko et al, XForms 1.0, W3C Recommendation 14
October 2003, http://www.w3.org/TR/xforms/
[11] E. Damiani, S. De Capitani di Vimercati, C. Fugazza, and P.
Samarati: Semantics-aware Privacy and Access
Control:Motivation and Preliminary Results, Proceedings of 1st
Italian Semantic Web Workshop, 10th December 2004
[12] Giles Hogben , A technical analysis of problems with P3P
v1.0 and possible solutions, Position paper for "Future of P3P"
workshop, Dulles, Virginia, USA, 12-13 November 2002,
http://www.w3.org/2002/p3p-ws/pp/jrc.html
[13] Cranor, Dobbs, Egelman, Hogben et al., The Platform for
Privacy Preferences 1.1 (P3P1.1) Specification W3C Working
Draft 4 January 2005 http://www.w3.org/TR/2005/WD-P3P11-
20050104/
 [14] McBride, B., Wenning, R., Cranor, L., An An RDF Schema
for P3P, W3C Note 25 January 2002,
http://www.w3.org/TR/p3p-rdfschema
[15] Jena open source semantic web libraries,
http://jena.sourceforge.net/
[16] Independent Centre for Privacy Protection (ICPP) /
Unabhängiges Landeszentrum für Datenschutz (ULD),
Schleswig-Holstein and Studio Notarile Genghini (SNG), Identity
Management Systems (IMS): Identification and Comparison
Study.

Policy Management for the Web WWW 2005

10 May 2005 51

http://www.w3.org/Submission/EPAL/
http://www.w3.org/2003/p3p-ws/pp/ibm2.html
http://www.w3.org/2003/p3p-ws/pp/ibm2.html
http://www.faqs.org/ftp/rfc/pdf/rfc3505.txt.pdf
http://www.w3.org/TR/p3p-rdfschema

Predicates for Boolean web service policy languages
Anne H. Anderson

Sun Microsystems Laboratories
Burlington, MA

Anne.Anderson@sun.com

ABSTRACT
Four of the web service policy languages that have been proposed
as the basis for a new standard are based on Boolean
combinations of predicates. This paper discusses why these types
of policy languages are of interest to industry, proposes an
abstract layering for them, and compares the predicate forms
used by two of these languages.

General Terms
Standardization, Languages.

Keywords
web services, policy.

1. INTRODUCTION
At the W3C Workshop on Constraints and Capabilities for Web
Services [1], various proposals for a standard language for use in
expressing policies for web services were presented. Four of the
languages presented were variations on Boolean combinations of
predicates: the Web Services Policy Framework (WS-Policy) [2],
the Web Services Description Language (WSDL) [3] with the
addition of compositors [4], the XACML profile for web services
(WSPL) [5], and a language outline from IONA Technologies [6].
These languages differ in the predicates that are used. In WS-
Policy, the predicates are Assertions that return a Boolean result,
but are not otherwise defined in the policy framework itself;
Assertion definitions are to be provided as part of each domain-
specific document that defines items to be controlled by a policy.
In WSDL compositors, the predicates are WSDL Boolean
Features, Properties, or nested compositor (Boolean operator)
expressions; Features and Properties are not further defined,
although some semantic guidance is provided. In XACML
WSPL, the predicates are XACML [7] functions that return a
Boolean result and operate on Attributes and literal values, where
an Attribute may be a name/type/value triple or a node in an
XML document identified by an XPath [8] expression. In the
IONA outline, the predicates are simple XML elements, with at
most a Yes/No parameter; the process of defining the elements to
be used is not elaborated in the outline proposal.

All these languages must rely on some mechanism for associating
policies with services or service elements. WS-Policy relies on
Web Services Policy Attachment (WS-PolicyAttachment) [9].
WSDL relies on attachment points defined in WSDL itself.
WSPL relies on a specified convention for the use of the XACML
Target element. The IONA outline does not describe its
mechanism.

This paper will discuss why these languages are of interest to
industry, will propose an abstraction for the layering of
functionality involved in such languages, along with the

functions of each layer, and will compare the forms of two types
of predicates, discussing their advantages and disadvantages.

2. WEB SERVICE POLICIES
This section describes, from this author's industry point of view,
how “web service policy” has come to be defined by industry and
why these Boolean combination policy languages have been of
interest to industry.

The proponents of these Boolean policy languages view “web
service policy” as being focused primarily on those aspects of a
service required to establish a connection and a session such that
message exchanges can be initiated. This focus arises from the
fact that these aspects of policy are almost universal among web
services – they all need to establish mutually agreeable security
and reliable messaging parameters, for example, and standards
for such parameters already exist. The proponents recognize that
more complex languages may be required for some application-
specific policy negotiations, but before such negotiations can
occur, communication must usually be established. It may also
be necessary to identify candidate service providers from a large
pool, and thus highly efficient policy matching is a primary goal.
Access control (web and OS) and security parameter (IPSec)
policies with these same constraints have been in production use
for years, so the design of “web service policy” languages has
tended to grow out of those models.

A standard language for addressing basic web service
communication is urgently needed, so industry is looking for a
solution that can be standardized quickly. The W3C Workshop's
call for position papers included a basic test case that position
papers were supposed to address. Several of the Boolean
combination policy language proposals included concrete
solutions for this test case. Rightly or wrongly, the fact that none
of the semantic web language proposals addressed the specific
use case did not lessen some industry skepticism about whether
semantic web languages are ready for production use in this area.

3. POLICY USES AND PROCESSORS
In order to develop appropriate web service policy languages, it
is important to understand how web service policies will be used
and which components of a web services architecture will use
them.

One important use is simply for a service provider to publish its
policies. A service consumer can query the policies of a provider
instance and dynamically configure itself to those policies. The
policy processor in this case is the consumer service application
itself. In addition to processing the policy expression, the
consumer must implement any functionality necessary for
conforming to the policy. The consumer must understand the
semantics of the items controlled by the policy in order to
implement this functionality.

A second important use is for a service to verify that
communications and messages it receives conform to its own
policy. A service may have an internal policy that is more
complex or more complete than the policy it publishes publicly,

Copyright © 2005 Sun Microsystems, Inc. All rights reserved.
WWW 2005, May 10--14, 2005, Chiba, Japan.

Policy Management for the Web WWW 2005

10 May 2005 52

but any communication would usually need to satisfy at least the
published policy. Verifying that a communication or message
conforms to a given policy does not require that the verifier
understand the semantics of the items controlled by the policy,
but only that the verifier know how to match communication or
message information against the policy.

A third important use is for determining a mutually agreeable
policy between a service consumer and a service provider. This
operation might be performed by a service broker that accepts
service registrations and client requests for services, and matches
consumers with providers where there is a mutually acceptable
policy. The entity that determines the mutually compatible
policy need not understand the semantics of the policy items, but
only that it can determine the intersection between two policies.

Policies can be used in other ways not directly involving
interactions between service providers and service consumers.
An example would be the use of a policy for describing the
values to be used in a particular deployment of a service. Such a
policy might specify which of various options supported by the
service are to be enabled, and with which values, in this
particular deployment. In this case, the service application is the
policy processor, and must understand the semantics of the policy
items.

4. POLICY LAYERS
Several functional layers can be identified for such policy
languages. The languages all require some underlying
“vocabulary” that defines the items to be controlled by a policy,
some mechanism for expressing predicates related to that
vocabulary, a mechanism for expressing Boolean combinations of
predicates, and a mechanism for associating the policy with a
service or service element. The following diagram illustrates this
layering, along with examples of where such layers are specified:

Table 1. Policy layers

Layer Specification examples

Vocabulary WS-Security, WS-Reliability

Predicate

WS-Security
Policy,
WS-

Reliability
Policy

XACML
functions undefined

Boolean
combination WS-Policy

XACML
Boolean
operators

WSDL
compositors

Association WS-Policy
Attachment

XACML
target WSDL

Additional functions can logically be assigned to these layers. 1)
An “or” of two predicates means that either predicate is
acceptable, but at the time communication is established, one of
the options must be selected. This suggests there should be a
mechanism for specifying preferences among “or”d predicates,
which would have to be specified at the Boolean combination
layer. 2) Likewise, a single predicate may indicate that a range
or set of values is acceptable for some item (e.g. “key length
must be at least 1024 bits”), yet one value must be selected at the
time communication is established. Preferences for these must
be specified at the predicate layer. 3) A policy consumer needs
to know the universe of items controlled by the policy and the
defaults for items not included in the policy: Must there be a
predicate for each item? Are unmentioned items prohibited or
unrestricted? This functionality belongs at the Boolean

combination layer. 4) Depending on how the defaults are
specified, the predicate layer may need to provide predicates to
indicate that a particular item is prohibited or is unrestricted. 5)
In order to match policies, there must be a way to tell which
predicates refer to the same underlying vocabulary item. 6) In
order to determine if two policies are consistent, there needs to
be a way to determine the set of values, if any, that satisfies each
of two different predicates over the same vocabulary item.

The major difference between these Boolean combination policy
languages is in the way the predicates themselves are defined.
The other layers are functionally equivalent, although the syntax
differences could affect the ease with which web service
specifications can be associated with policies. Since neither the
WSDL nor the IONA proposals describe their predicate layers in
detail, the remainder of this paper will focus on WS-Policy and
WSPL.

5. WS-POLICY
5.1 WS-Policy Overview
WS-Policy is a proprietary specification developed by a group of
companies that includes IBM, Microsoft, and BEA. As of the
writing of this paper, it has not been submitted to any standards
body.

WS-Policy defines two Boolean operators - <All> (Boolean
“and”) and <ExactlyOne> (exclusive-or) - that may be
applied to sequences of Assertion predicates. These operators
may be nested. Previous versions of WS-Policy included a
mechanism for providing hints about the policy writer's
preferences among various alternatives, but this mechanism was
omitted from the most recent version.

5.2 WS-Policy Predicate Layer
In WS-Policy, each web service specification must define a set of
policy Assertions to be used in expressing policy predicates
related to the vocabulary defined in the specification. For
example, if the underlying vocabulary specification defines an
XML schema element <v:A> that is to be controlled by web
service policies, then there must one or more additional elements
defined for use in expressing the policy predicates relating to
<v:A>.

WS-SecurityPolicy [10], which defines the Assertion predicates
to be used with the WS-Security [11] vocabulary, is the example
used in the WS-Policy specification. Each new domain's
vocabulary will require its own set of Assertion predicates,
although the WS-Policy authors suggest that in the future, such
Assertions will be defined as part of the underlying vocabulary
specification – WS-Security and WS-Reliability are examples of
legacy specifications for which external Assertions must be
defined.

In comparing policies, conceptually each policy is first converted
to Disjunctive Normal Form, such that the policies become
sequences of acceptable alternative sets of Assertions. The
intersection of two policies includes the “compatible policy
alternatives (if any) included in both requester and provider
policies. Intersection is a commutative, associative function that
takes two policies and returns a policy.” If the intersection is
empty, the two policies are incompatible. A set of Assertions in
one policy is compatible with a set of Assertions in another
policy if each instance of an Assertion type in one policy is
compatible with each instance of that Assertion type in the other
policy. If an instance of a given Assertion occurs in only one set,
then “the behavior associated with that Assertion type is

Policy Management for the Web WWW 2005

10 May 2005 53

prohibited in the intersection of those policies”, although this
interpretation does not seem semantically consistent: if one
policy requires encryption, and the other says nothing about
encryption, then prohibiting encryption is not compatible with the
first policy.

5.3 WS-Policy Predicate Processing
The specification that defines Assertion <vp:A ...> must
Whether two instances of a given Assertion type are compatible
is determined by the semantics defined in the domain-specific
Assertion specification. The WS-Policy authors intend to provide
guidance to Assertion developers on how to write Assertions that
can be compared easily [12].

An Assertion may be a complex XML type. For example:
<vp:A attrB=”...” attrC=”...”>
 <vp:D>example1</vp:D>
 <vp:E>25</vp:E>
 <vp:F attrG=”...” />
</vp:/A>

The specification that defines Assertion <vp:A ...> must
define all possible variations of this element that a service
consumer might request, what the intersection of any two
instances of this Assertion is, which combinations are not
allowed, and how the various forms of the Assertion relate to
acceptable instances of the underlying domain-specific
vocabulary that is the subject of the policy. Any policy processor
that must verify a message against or compare instances of
<vp:A ...> must incorporate a code module that implements
the semantics specified for <vp:A ...>.

6. WSPL
6.1 WSPL Overview
The syntax of WSPL is a strict subset of the OASIS eXtensible
Access Control Markup Language (XACML) Standard.
Additional semantics have been specified in the WSPL
specification. A WSPL prototype has been implemented.

A WSPL policy is a sequence of one or more rules, where each
rule represents an acceptable alternative. A rule is a sequence of
predicates, all of which must be satisfied in order for the rule to
be satisfied. Rules are listed in order of preference, with the
most preferred choice listed first. A WSPL policy is in
Disjunctive Normal Form, where the rules are logically
connected with “OR” and the predicates within each rule are
connected with “AND”.

A more complete description of WSPL is contained in [13].

6.2 WSPL Predicate Layer
WSPL defines a standard language for use in specifying
predicates that constrain domain-specified vocabulary items.
WSPL predicates are XACML functions that return Boolean
values. The parameters to the functions are XACML Attributes
and literal values. An Attribute corresponds to a domain-defined
vocabulary item. Attributes are referenced in two ways,
depending on how the domain defines them. An
AttributeDesignator references a vocabulary item using a
domain-defined URI and a standard data type. An
AttributeSelector specifies a vocabulary item using an XPath
expression that selects the vocabulary item from a domain-
defined XML document. This document is usually an instance of
the schema that defines the domain vocabulary.

Each WSPL predicate places a constraint on the value of an
Attribute. The constraint operators are: equals, greater than,
greater than or equal to, less than, less than or equal to, set-
equals, and subset. All the comparison operators are strongly
typed and must agree with the data types specified for the
function parameters. WSPL supports the rich set of data types
used in XACML: string, integer, floating point number (double),
date, time, Boolean, URI, hexBinary, base64Binary,
dayTimeDuration, yearMonthDuration, x500Name, and
rfc822Name. These data types are all taken from the XML
Schema [14], with the exception of the two duration types taken
from XQuery Operators [15], and the two name types taken from
XACML.

6.3 WSPL Predicate Processing
In order to find the intersection of two WSPL policies, several
steps are performed. First, the targets of the two policies must
match (Targets are described more completely in [13]). If the
targets do not match, then the two policies are not compatible.
Second, a new policy is created in which there is one rule for
each pair of rules from the original policies, where the new rule
contains all the predicates from the two original rules. For any
given set of vocabulary item values, this new policy will return
“true” if and only if both original policies would return true,
since the new policy retains all the constraints from the two
original policies. WSPL rules are listed in order of preference in
a policy: if one rule precedes another, then the policy owner
prefers the combination of vocabulary item values specified by
the first rule to the combination specified by the second rule. By
default the entity that performs a policy intersection preserves
the preferences of one policy completely, and the preferences of
the second policy to the extent that those are consistent with the
preferences of the first. More complex preference combining
algorithms could be used, but there is always the possibility of
preference conflicts, and the combining algorithm must have
some mechanism for resolving these.

The next step is to merge the predicates in each of these new
rules such that, for each vocabulary item referenced in the new
rule, there is a single predicate (or two predicates in the case of a
range of vocabulary item values bounded at each end) that will
be true if and only if all predicates in the rule that reference that
vocabulary item are true. WSPL specifies the computation of
such predicates, based on the laws of arithmetic and logic, for
every function operator and data type. For example, the two
predicates “Attribute A > Value B” and “Attribute
A = Value C” are both true if and only if “Value B >
Value C” and “Attribute A = Value C”. If “Value
B” is not greater than “Value C”, then the two predicates are
incompatible, and thus the new rule can never be true and is
eliminated from the new policy. After this step, each remaining
rule is internally consistent: there are no conflicting predicates
over the same vocabulary item. The two original policies are
incompatible if and only if this resulting set of rules is empty.

The intersection of any two policies specified using the WSPL
predicate language can be computed. Computing this
intersection requires no knowledge of the semantics of the
referenced domain-specific vocabulary items, but depends only
on the semantics of the set of standard functions and data types.
The resulting policy is in a form such that a policy user can select
any rule, select values for each vocabulary item consistent with
the predicates in that rule, and that resulting set of values will be
acceptable to both original policies.

Policy Management for the Web WWW 2005

10 May 2005 54

7. COMPARISON OF PREDICATE FORMS
Both these styles of predicate specification have their advantages
and disadvantages.

A single WS-Policy predicate can control multiple related items
in the underlying vocabulary; each WSPL predicate applies to
only one item. We have designed an extension to WSPL,
however, that allows predicates pertaining to related items to be
grouped.

A WS-Policy predicate can be abstract. For example, one
Assertion can state that a digital signature is required, without
specifying any details about the syntax of that signature. This
same Assertion could be used with multiple digital signature
syntaxes. A WSPL predicate on the other hand, if it uses XPath
expressions to reference actual nodes in an instance of the the
underlying vocabulary schema, must depend on an actual node
value that will be present in particular schema instances. This
can make policies complex if there are multiple ways a particular
requirement could be met in a schema instance (for example,
there are multiple ways to reference an object to be signed in a
message when using the XML Digital Signature standard).
XACML name/type/value Attributes can be defined, however, to
accomplish the same abstraction functions as WS-Policy
Assertions.

The WS-Policy Assertions that need to be compared between two
policies can be easily determined, because the Assertions will
usually have the same name; there might be cases where two
different Assertions might need to be compared, however, as
when a consumer asserts a “MaximumBuyingPrice” Assertion,
while a provider asserts a “MinimumSellingPrice” Assertion.
Comparable WSPL AttributeDesignators can always be matched,
because they must have the same name; similar “maximum” and
“minimum” semantics are captured in the function operator
rather than in the Attribute itself. If AttributeSelectors using
XPath expressions are used, however, there may be multiple
expressions that point to the same node in a schema instance.
We are trying to define a subset of XPath that uniquely identifies
each node to deal with this problem.

A WS-Policy Assertion can specify requirements on document
creation, such as the requirement that information describing
each document processing step be prepended to previous step
information, thus allowing the steps to be “undone” in order by
the message receiver. An XACML Attribute could be defined to
express such semantics, but it can not be done with XPath
expressions, since there is nothing in the document that indicates
the order in which nodes were added. Note that this type of
predicate can not be verified against a given message; it must
simply be asserted as a requirement on a document processor.

In order to use a WS-Policy Assertion for message verification,
the verification engine must include special code that knows how
to relate that Assertion to a particular type of message. A WSPL
predicate that uses XPath expressions can be used directly to
verify that the predicate is satisfied in a message.

WS-Policy Assertions may be defined in proprietary
specifications. Even if the specification is eventually
standardized, there can be a long period during which the
specification is under development and is not available to all
implementers of policy processors. Particularly for policies
related to application-specific vocabularies, there may be limited
incentive to rush the policy specification to standardization.
WSPL predicates, however, can refer directly to the underlying

vocabulary specification, and the semantics of those predicates
are standard and do not depend on the underlying specification.
Alternatively, an XSLT can be used to translate information
from an instance of a proprietary schema into a non-proprietary
format such as XACML Attributes for use in specifying policies.

The Boolean operators defined in WS-Policy can be nested,
resulting in a compact policy format; in order to process a policy,
it must be at least nominally converted to Disjunctive Normal
Form. In WSPL, the policies are always in Disjunctive Normal
Form. This, along with the fact that functions are used to specify
semantics, rather than having the semantics be implicit in the
predicate itself, means that a given policy expressed in WSPL
will almost always require more bytes for its expression than a
corresponding WS-Policy policy.

From this author's industry perspective, the most significant
difference between WS-Policy Assertions and WSPL predicates
is that each Assertion has unique domain-defined semantics that
must be captured in a code module incorporated into any entity
that must process the Assertion, either to compare it or to verify
it. Each new domain-defined set of Assertions requires that
policy processors be updated to support those; any change to
existing Assertions likewise requires processor updates. Any
processor that has not been updated will not be able to process
new or modified Assertions, making it less likely that policies
will be interoperable between different platforms. As more and
more Assertions are defined, the footprint and maintenance
complexity of each policy processor increases. WSPL predicates,
on the other hand, use a finite, standard set of functions that do
not depend on domain-defined semantics. Any WSPL processor
can process any WSPL policy, new or old, and regardless of
whether the underlying vocabulary is defined in a proprietary
specification or not.

As a proof-of-concept, this author has translated all the
Assertions defined in WS-SecurityPolicy into WSPL. This
exercise was successful in demonstrating that WSPL can handle
the policy semantics of a real-life domain.

8. SUMMARY
The web service policy languages that use Boolean combinations
of predicates differ primarily in the forms those predicates take.
In WS-Policy, predicates are XML elements whose syntax and
semantics are domain-specific, with each policy item or group of
items having its own set of predicates. In WSPL, predicates are
standard XACML functions over a reference to a policy
vocabulary item and a literal value. Both forms have advantages
and disadvantages. The primary advantage of the WS-Policy
form is that predicates tend to be compact and easy to read. The
primary disadvantage is that policy processors must be
configured to support the syntax and semantics of each predicate
type that will be used by any policy. The primary advantage of
the WSPL form is that a standard policy processor is able both to
compute the intersection of any two policies and to verify any
message against a policy. The primary disadvantage is that
predicates that directly reference nodes in a domain schema
instance may be overly specific, although WSPL also supports
the creation of new vocabulary items to express more abstract
requirements. WS-Policy currently has no preference
mechanism, and the semantics of missing predicates appears to
be incorrect; WSPL allows policy alternatives to be ordered by
preference. WSPL needs an XPath subset that can be used to
uniquely identify a policy item.

Policy Management for the Web WWW 2005

10 May 2005 55

9. REFERENCES
[1] W3C, W3C Workshop on Constraints and Capabilities for

Web Services, http:// www.w3.org /2004/09/ws-cc-program .,
12-13 October 2004.

[2] J. Schlimmer, ed., Web Services Policy Framework (WS-
Policy),
http:// msdn.microsoft.com /library/ default.asp ? url =/library/e
n-us/ dnglobspec / html /ws- policy.asp , September 2004.

[3] W3C, Web Services Description Language (WSDL) 1.1,
W3C Note, http://www.w3.org/TR /wsdl , 15 March 2001.

[4] U. Yalcinalp, Proposal for adding Compositors to WSDL
2.0, http:// lists.w3.org /Archives/Public/ www -ws-
desc /2004Jan/0153.html , 26 January 2004.

[5] T. Moses, ed., XACML profile for Web-services,
http://www.oasis-open.org/committees/download.php/3661/
draft-xacml-wspl-04.pdf, Working draft 04, 29 Sept 2003
(also known as “Web Services Policy Language (WSPL)”).

[7] T. Moses, eds., OASIS eXtensible Access Control Markup
Language (XACML), OASIS Standard 2.0,
http:// www.oasis - open.org /committees/xacml , 1 February
2005.

[8] W3C, XML Path Language (XPath), Version 1.0, W3C
Recommendation, http://www.w3.org/TR/ xpath , 16 Novem-
ber 1999.

[9] C. Sharp, ed., Web Services Policy Attachment (WS-
PolicyAttachment),
http://msdn.microsoft.com/library/default.asp?url=/library/e
n-us/dnglobspec/html/ws-policy.asp, September 2004.

[10] A. Nadalin, ed., Web Services Security Policy Language
(WS-SecurityPolicy), Version 1.0,
http://msdn.microsoft.com/ webservices / default.aspx ?pull=/li
brary/en-us/dnglobspec/html/ws- securitypolicy.asp , 18
December 2002.

[11] A. Nadalin, et al, eds., WS-Security, OASIS Standard 1.0,
http://www.oasis-
open.org/committees/tc_ home.php ? wg _abbrev= wss , 6 April
2004.

[12] J. Schlimmer, personal communication, 12 October 2004.
[13] A. Anderson, An Introduction to the Web Services Policy

Language (WSPL), Proceedings of the Fifth IEEE
International Workshop on Policies for Distributed Systems
and Networks, Yorktown Heights, New York, 7-9 June
2004, pp. 189-192.

[14] W3C, XML Schema Part 2: Datatypes, W3C
Recommendation, http://www.w3.org/TR/ xmlschema -2/ , 2
May 2001.

[15] W3C, XQuery 1.0 and XPath 2.0 Functions and Operators,
W3C Working Draft 2002,
http://www.w3.org/TR/2002/WD- xquery -operators-
20020816, 16 August 2002.

Policy Management for the Web WWW 2005

10 May 2005 56

Policy Management and Web Services
Tim Gleason

Oracle Corporation
224 Strawbridge

Moorestown, NJ 08054

tim.gleason@oracle.com

Kevin Minder
Oracle Corporation

224 Strawbridge
Moorestown, NJ 08054

kevin.minder@oracle.com

Greg Pavlik
Oracle Corporation

224 Strawbridge
Moorestown, NJ 08054

greg.pavlik@oracle.com

ABSTRACT
We maintain that the representation syntax of specific Web
services policies is secondary to the general problem of policy
management in the Web services space. We outline a broad view
of the policy space in middleware systems, discuss emerging
solutions for the Web services environment, and explain critical
aspects of policy management that are required for taking Service
Oriented Architectures (SOAs) to the next level.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability

General Terms
Management, Standardization, Languages.

Keywords
Web services, Policy Framework, Policy Management, Policy
Enforcement.

1. Background
The term ‘Policy’ in distributed systems typically refers to an
externally consumable statement of system constraints,
capabilities or requirements that effect the interaction between a
consumer and a service. In some cases, the policy may simply
impact the decision to make use of a service; in other cases, the
policy may place constraints on the interaction itself. An example
of the former is a privacy policy, which, if deemed unacceptable,
will cause the consumer to forgo use of a service altogether. An
example of the latter is a policy that dictates that the service be
used in the context of a transaction. In this case, interactions with
the service must somehow be scoped as part of a larger unit of
work.
Systems that are designed primarily with human users as principal
actors in the consumer role tend to advertise policies that revolve
around the decision to use a service. The archetypical example of
such a system is the Web. Policies for the Web tend to fall into
several classes
Policies designed to encourage use
Users may consider it desirable for a Web site to maintain strict
rules about how information about site users is managed. For
example, users are more likely to use a Web site if they have
confidence the site owner will not distribute personal information
and will guarantee an adequate level of protection for credit card
data.

Though formal syntax is not always used to express policies of
this nature, the Platform for Privacy Preferences (P3P)
specification [1] describes a policy language for expressing the
privacy rules adhered to by an organization in machine readable

and human interpretable form. These policies generally assume a
level of trust; in the Web environment, this is typically gained
through a combination of certification by an independent authority
and perhaps more commonly by reputation.
Policies designed to constrain access
Rules surrounding the access rights for a Web server are an
example of this kind of policy. Typically, authentication and
authorization procedures are integrated with the Web site’s human
user interface; in this case, the communication mechanism is
relatively ad hoc and presented via HTML or similar markup
languages.
Policies about availability
These are policies that declare under what terms a service is
available. This information is typically communicated in quality
of service agreements, as maintenance notices, or general
information about a Web site. Examples of this kind of policy are
notices of administrative practices requiring downtime for
maintenance or payment requirements for use. These policy
statements are important mechanisms for managing user
expectations; in some cases, users may decide not to use a site
based on conflicting availability requirements. Availability may
apply not only to network presence of the service, but also to
secondary business functions. For example, a Web site may be
available on a 24X7 basis but may not have order processing
available on weekends. Policies dealing with availability are also
typically expressed through markup and interpreted by users.

These policy categories are not mutually exclusive. For example,
a Web site may have policies that are intended to encourage the
use of a site by a restricted class of users. The salient feature of
Web policies is that they tend to be heavily oriented toward direct
consumption by human users, assuming that users will find the
policies and interpret them satisfactorily. In many cases, the
policies are expressed in written statements on Web sites. Policies
for Web sites tend to apply to the broad aspects of the site, rather
than individual resources. For example, a certain portion of a Web
site may require payment for use. More specialized services that
provide access to copyrighted digital assets often place constraints
on classes of resources (for example, you must pay .99 USD to
download a song from Apple’s popular iTunes Web site).

Distributed systems that focus on machine-to-machine
interoperability have traditionally provided policies reflecting
low-level constructs familiar to programmers that build such
systems. Taking CORBA [2] as a representative example, policies
are typically based on local configuration that is in turn tied to
specific object references exported into the user environment.
Policies for system level functions like security or transactions are
exposed as properties of the distributed object reference (CORBA
IOR). This allows programs to analyze remote services
dynamically to assure that appropriate quality of service semantics
are maintained when the service is invoked.

Policy Management for the Web WWW 2005

10 May 2005 57

These policies are in general different from the typical Web
policies in that:

1) Middleware policies are intended to be interpreted
and used by software systems rather than human
users.

2) For the most part, middleware policies deal with
defining the semantics of interactions with a
service. These policies are very different from the
kinds of policies that are defined for Web
resources.

3) These policies are very tightly bound to specific
service implementations. In the CORBA example,
policies are expressed to clients of the service
within each individual object reference. Typical
CORBA programs are based on the object oriented
design paradigm, which may encourage the use of
very fine-grained policies.

Web services policies combine elements found in both traditional
middleware for machine-to-machine interoperability and policies
associated with Web resources.

2. Web Services Policy
A general breakdown of the Web services policy space today
includes:
Policies that focus on enabling and exposing traditional
middleware system services like message delivery guarantees,
transaction semantics, and security requirements. The WS-Policy
Framework [3] specification proposed by Microsoft and IBM is
oriented heavily toward expressing this kind of policy. Its
emphasis on selection and logical operators – which we believe is
of limited utility in practice even for the case of system services –
make it a poor choice for other kinds of policies. As a general
rule, these policies will affect the message payload by the addition
of SOAP [4] headers specific to the policy selection that has been
made for a message exchange. For example, the use of a WS-
Reliability [5] functionality in a message exchange will include
SOAP headers that look something like the following:
<wsrm:Request
xmlns:wsrm="http://www.oasisopen.org/committees/ws
rm/schema/1.1/SOAP1.1"

xmlns:SOAP="http://schemas/xmlsoap.org/soap/envelo
pe/"

SOAP:mustUnderstand="1">

<wsrm:MessageIdgroupId="20041221-160154-
022.9@nobody.oracle.com"/>

<wsrm:ExpiryTime>2005-04-
16T09:48:34</wsrm:ExpiryTime>

<wsrm:ReplyPattern>

<wsrm:Value>Poll</wsrm:Value>

</wsrm:ReplyPattern>

<wsrm:AckRequested/>

<wsrm:DuplicateElimination/>

</wsrm:Request>

Information policies: in many cases these will be formalizations
of the kind of Web polices outlined above. Web services will
require structured mechanisms to express informational policies,
but complex policies will continue to be provided in forms
targeted for direct human consumption in the near term. We
believe that higher-level protocols will need to be developed to

allow clients to express their expectations about specific
informational policies. Informational policies typically impact the
decision to use a service rather than the specific content of a
message exchange. For example, a P3P document may express
policies about the maintenance of personal information that are
unacceptable to some users.
Service level agreements guaranteeing some combination of
commitments around the quality of the service itself and the
underlying business processes it represents. These policies are
often tailored to specific users or classes of users and may depend
on complex business rules. These policies are often applied by
leveraging specific information associated with the established
identity of the message sender.

Aside from the classes of policies we identify above, we assume
the following requirements for Web services policies:

1) More than one policy may be associated with a
service. We believe that multiple policies, often
representing very different kinds of policy
domains, will be in effect for a single service. For
example, a single service may include policies for
security, privacy, and business agreements.

2) A single policy may be associated with more than
one service. Large organizations expect to set
global policies and assure normal constraints and
rules for sets of services. End users seeking to
create a SOA are looking for mechanisms to
support policy normalization.

3) Policies associated with a service may change over
the lifetime of a service. For example, new polices
may be introduced after a service has been
deployed or existing policies may evolve over time

4) Policies need to vary independent of WSDL: new
policies should be managed and provisioned
independently of the basic business function and
message exchanges offered by a service
implementation.

At the current time, the Web services policy space is murky and
evolving. There are proprietary proposals that emphasize different
aspects of policy requirements, but tend to support one class of
policy types better than others. In addition, there is the general
problem of business rules and semantics. So called Semantic Web
services have garnered great interest in academic circles but have
not made in-roads in practice in the software industry.

The first step for providing a policy management solution is to
achieve a standardized policy framework capable of meeting the
requirements we have outlined. Regrettably, the industry has not
yet been able to reach this critical milestone; in fact, no widely
accepted standard effort exists in this space at the time of this
writing. As a result, policies are often created in ad hoc ways and
communicated through mechanisms that are out of band with
respect to the Web services architecture and model. For example,
we know of organizations maintaining Word documents that are
passed via email describing how their Web services should be
used. We believe the following design goals should be
accommodated in a viable policy framework standard.

First, a policy framework should be able to support for different
domains and styles of policy expression. Services will be bounded
by a range of policy types, each critical in its own regard. A
framework for supporting policies for security, reliability and
transactions is necessary but insufficient. On the other hand, these

Policy Management for the Web WWW 2005

10 May 2005 58

kinds of policies should be able to be expressed in a simple and
easy to process set of assertions. We believe that a useful policy
framework should provide containers for domain expressions that
may utilize their own syntax and express their semantic
requirements in a domain specific manner. The outline of a
framework that provides domain containers is described in [6].
Much of the either/or discussions about policies that utilize
Semantic Web capabilities versus assertion-based model may
miss the point: domains should be free to utilize the technologies
that appear best suited for the specific problem space

Second, informational policies are processed by service
consumers to determine if a service may be used. Since policies
may evolve independent of service interfaces, consumers should
be able to express their expectations about informational policies
that are believed to apply to a service. A SOAP header with a
mustUnderstand=”1” attribute could be used to convey
expectations about specific informational policies; services that
are not observing the policy expectation should return a fault
rather than process the SOAP message carrying unsatisfied
expectations.

Third, a policy document will be associated with a Web service.
The standard should ensure that policies are not required to be
included within WSDL documents or constructs so that the two
may evolve freely. To support this model, we advocate extensions
to WSDL indicating that a policy is enforced and how it may be
obtained.

3. Policy Management
The classes of polices and general requirements for policies in the
Web services environment, taken together, directly help to define
the scope of a Web services policy management solution.
Specifically, a Web services policy management solution needs to
manage:

1) Policy Lifecycle

This includes the definition, maintenance and
application of policies. The management of policies
throughout their lifecycle combines problems of
metadata management and organization as well as
content management versioning and control facilities.
Policies may be ad hoc or informal and should also be
supported within the system: another motivator for
dividing policy expressions into independent domains
Many Web services management products support a
policy repository capability that supplies some or all of
these features and some protocol to provision policies to
enforcement points. At the present point in time, these
functions are achieved by non-standard and proprietary
mechanisms.

2) Policy Discovery/Access
End users need to have access to policies to make
decision about whether to use and how to use a service.
Regardless of how policy lifecycles are controlled, a
policy management solution must allow for metadata
retrieval and policy organization. Most solutions will
provide an association of policies and services,
generally organized with some logical structure, perhaps
based on taxonomies. The UDDI specification [7]
provides interoperable rules for service registries, which
can also expose policies and associated resources. In
some cases, the Web services platform on which a
service is hosted will directly supply the policy in

response to a specific query using the HTTP protocol or
a specialized Web services protocol for metadata
retrieval. The WS-MetadataExchange specification [8]
is an example of the latter.

3) Enforcement of policies for individual and groups of
services.

One mechanism that is emerging in practice to handle
policy enforcement is gateway services that act as active
intermediaries in the SOAP processing model. The
gateways process SOAP messages and enforce policy
constraints or resolve system-level instructions before
the message is provided to the service implementation
for processing. For example, a gateway service may
manage authentication and authorization based on
policies defining the access control rules for a service or
group of services (policy normalization). We believe
that Web services intermediaries will prove to be
fundamental to Service Oriented Architecture (SOA)
deployments; we discuss this area in more detail below.

A policy management solution is foundational to a SOA: it
provides a global model for an organization to understand and
control the services within an organization. While application
servers provide hosting platforms for individual services, a policy
management solution provides visibility and control over a SOA
topology and its characteristics. From this perspective, policies for
organizations may be most effectively managed in centralized
repositories that allow for businesses to set global policies and
store information about how a service may be used. Individual
service deployments can extend and specialize policies based on
their specific requirements; this implies that well-defined rules
must be in place for how policy domain expressions may be
combined. Again, we believe this is largely a domain specific
problem. Managing and storing metadata about services is largely
a data management problem and amenable to storage in metadata
containers built on standard relational database solutions.
Somewhat more problematic is the enforcement of managed
policies, since services typically rest on a heterogeneous set of
application server technologies. We believe that the following
methods of policy enforcement are viable solutions for the Web
services environment: local agents and gateways.
Agents that reside at service endpoints.
Agents allow processing logic to be inserted directly at service
endpoints. This can occur via interception of the carrier protocol
stream or within application server specific extensibility points
specific to the Web services environment, such as JAX-RPC [8]
Handlers. In either case, agents need to receive current policy
definitions from the management repository.
Gateway-type active intermediaries.
Active intermediaries in the SOAP processing model can often be
used to spread the processing logic of ultimate message recipients
across multiple servers. A gateway can be configured to
transparently enforce policies that are expressed as properties of
the Web service. While the archetypical use case for Web services
gateways is enforcement of security policies, almost any policy
can be enforced or observed via a gateway architecture by
organizing a pipeline of policy enforcement steps required for the
service. Since these intermediaries may combine global and
service specific policies, composition rules should be well-
specified and isolated to overlapping domains.

Both enforcement mechanisms can be used to provide data about

Policy Management for the Web WWW 2005

10 May 2005 59

policy enforcement to systems management consoles. This
combination of a well-factored policy framework, policy
provisioning, access, and enforcement mechanisms, and
monitoring capabilities provide a compelling solution for the Web
services environment.

One area that requires special care is the provisioning of policies
between centralized repositories and enforcement points: it is
important that policies are applied consistently, particularly in
replica-based cluster environments. This can be a significant
challenge in agent-based systems and is an area that is rife for
interoperability research proposals and ultimately standardization.

4. Conclusion
A complete Policy framework needs to accommodate the
requirements for different classes of policies and the solution
architecture that is emerging for the management of policies. We
do not believe that current proposals meet the full range of
requirements that exist for a complete Web services policy
solution. In particular, current proposals are not tailored to the
emerging requirements, organization and deployment topologies
of Web services networks and policy management solutions that
are required for a coherent SOA deployment.

5. Acknowledgements
Special thanks to Ashok Malhotra and Jon Maron for their
insightful comments. Thanks also to the Oblix CoreSV product
team for sharpening our understanding of Web services
management in commercial practice.

6. References
[1] Cranor, Lorrie et al. The Platform for Privacy Preferences 1.0

Specification. (April 2002) http://www.w3.org/TR/P3P/

[2] Common Object Request Broker Architecture: Core
Specification. (March 2004)
http://www.omg.org/docs/formal/04-03-01.pdf

[3] Bajaj, Siddharth et al. Web Services Policy Framework.
(September 2004)
ftp://www6.software.ibm.com/software/developer/library/ws
-policy.pdf

[4] Gugdin, Martin et al. SOAP Version 1.2 Part 1: Messaging
Framework. (June 2003) http://www.w3.org/TR/soap12-
part1

[5] Iwasa, Kazunori. WS-Reliability 1.1. (August 2004)
http://docs.oasis-open.org/wsrm/2004/06/WS-Reliability-
CD1.086.pdf

[6] Ashok Malhotra and Umit Yalcinalp. Position Paper for
W3C Constraints and Capabilities Workshop. (August 2004)
http://www.w3.org/2004/08/ws-cc/amuy-20040903

[7] Ballinger, Keith et al. Web Services Metadata Exchange
(September 2004)
ftp://www6.software.ibm.com/software/developer/library/W
S-MetadataExchange.pdf

[8] Chinnici, Roberto and Hadley, Marc. Java API for XML
based RPC (JAX-RPC) 2.0. (June 2004)
http://jcp.org/aboutJava/communityprocess/edr/jsr224

Policy Management for the Web WWW 2005

10 May 2005 60

Representing Security Policies in Web Information
Systems

Félix J. García
Clemente

Departamento de
Ingeniería de la

Información y las
Comunicaciones

Campus de Espinardo, s/n
30.071 Murcia, Spain

+34 968 367645

fgarcia@dif.um.es

Gregorio Martínez
Pérez

Departamento de
Ingeniería de la

Información y las
Comunicaciones

Campus de Espinardo, s/n
30.071 Murcia, Spain

+34 968 367646

gregorio@dif.um.es

Juan A. Botía
Blaya

Departamento de
Ingeniería de la

Información y las
Comunicaciones

Campus de Espinardo, s/n
30.071 Murcia, Spain

+34 968 367317

juanbot@um.es

Antonio F. Gómez
Skarmeta

Departamento de
Ingeniería de la

Información y las
Comunicaciones

Campus de Espinardo, s/n
30.071 Murcia, Spain

+34 968 364607

skarmeta@dif.um.es

ABSTRACT
Policies, which usually govern the behaviour of networking
services (e.g., security, QoS, mobility, etc.), are becoming an
increasingly popular approach for the dynamic regulation of web
information systems. The adoption of a policy-based approach for
controlling a system requires an appropriate policy representation
regarding both syntax and semantics, and the design and
development of a policy management framework. In the context
of the Web, the use of languages enriched with semantics (i.e.
semantic languages) has been limited primarily to represent Web
content and services. However the capabilities of these languages,
coupled with the availability of tools to manipulate them, make
them well suited for many other kinds of application, as policy
representation and management. This paper provides the current
trends of policy-based management enriched by semantics applied
to the protection of web information systems. It also presents an
approach for using DMTF Common Information Model (CIM)
ontology with semantic languages.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information System]:
Security and Protection.

General Terms
Management, Security, Languages

Keywords
Semantic Languages, Security Policy, CIM Ontology

1. INTRODUCTION
One of the main goals of policy-based management is to enable
network, service and application control and management at a
high abstraction layer. Using a policy language, the administrator
specifies rules that describe domain-wide policies which are
independent of the implementation of the particular network node,
service and/or application. It is, then, the policy management
architecture that provides support to transform and distribute the
policies to each node and thus enforce a consistent configuration

in all the elements involved. This is a prerequisite for achieving a
mean to dynamically constrain and regulate the behaviour of a
system without the human cooperation.

In the web information systems security field, a policy (i.e.,
security policy) can be defined as a set of rules and practices
describing how an organization manages, protects and distributes
sensitive information at several levels. Security policies can be
defined to perform a wide variety of actions, from IPsec/IKE
management (example of network security policy) to access
control over a web server (example of application-level policy).

Researchers have proposed multiple approaches for policy
specification. They range from formal policy languages that a
computer can directly process, to rule-based policy notation using
an if-then-else format, or to the representation of policies based on
Deontic logic for obligation and permissibility rules.

To cover this wide range of security policies languages, this paper
aims to examine the current state of policy engines and policy
languages, focusing on the approaches enriched with semantics
(i.e. semantic languages) using RDF [11] and OWL [2] as
standards for policy specification. We intend to show the
strengths and limitations of such languages by comparing three
approaches: KAoS, Rei and SWRL.
The major benefit of specifying security policy rules in this way
is that an organization can utilize a common ontology that can be
shared amongst services and service clients. In this sense, DMTF
presents the Common Information Model (CIM) standard [4] to
provide a common definition of management-related information.
This paper also presents an approach for using CIM ontology with
semantic languages. It permits an administrator to formally
describe the security policies of an administrative domain using
the DMTF methodology.
This document is structured as follows. Section 2 presents the
requirements of policy frameworks, focusing on policy languages
and policy architectures. Then, section 3 presents a comparative
analysis between “traditional” non-semantic and semantic policy
frameworks to emphasize the advantages of semantic approaches.
Section 4 describes and compares the three semantic approaches
aforementioned. Then, section 5 presents the extension of the
semantic policy language SWRL with the CIM ontology and
shows an example for an authorization policy. Finally, we
conclude the paper with our remarks and some future directions
derived from this work.

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

Policy Management for the Web WWW 2005

10 May 2005 61

2. REQUIREMENTS FOR A POLICY
FRAMEWORK
The policy administrator needs to use a policy language that
assures that the representation of policies guarantee the following
requirements:

� Well-defined. A policy language can be considered as well-
defined if the syntax and structure is clear and no-ambiguous,
and the meaning of a policy written in this language is
independent of its particular implementation.

� Flexibility and extensibility. A policy language has to be
flexible enough to allow new policy information to be
expressed, and extensible enough to allow new types of policy
to be added in future versions of this language.

� Interoperability with other languages. There are usually
several languages that can be used in different domains to
express similar policies, and interoperability is a must to allow
different services or applications from these different domains
to communicate with each other according to the behaviour
stated in these policies.

Once the policy has been defined for a given administrative
domain, a management architecture is required to transfer, store
and enforce this policy in that domain. The main requirements for
such policy management architecture are:

� Well-defined interface. Policy architectures need to have a
well-defined interface independent of the particular
implementation in use. In it, the interfaces between the
components need to be clear and no-ambiguous.

� Flexibility and definition of abstractions to manage a wide
variety of device types. The system architecture should be
flexible enough to allow addition of new types of devices with
minimal updates and recoding of existing management
components.

� Interoperability with other architectures (inter-domain). The
system should be able to interoperate with other architectures
that may exist in other administrative domains.

� Conflict Detection. It has to be able to check that a given
policy does not conflict with any other existing policy.

� Scalability. It should maintain quality performance under an
increased system load.

The policy framework has to support all these requirements to
guarantee the correct system operation.

3. ADVANTAGES OF SEMANTIC
SECURITY POLICY FRAMEWORKS
There are some non-semantic security policy frameworks such as
Ponder [3] and XACML [7] that we describe briefly as follows:
� Ponder, is a declarative, object-oriented language developed

for specifying management and security policies. Ponder
permits to express authorizations, obligations, information
filtering, refrain policies, and delegation policies. Ponder can
describe any rule to constrain the behaviour of components, in a
simple and declarative way.

� The eXtensible Access Control Markup Language (XACML)
describes both an access control policy language and a
request/response language. The policy language provides a
common means to express subject-target-action-condition
access control policies and the request/response language

expresses queries about whether a particular access should be
allowed and describes answers to those queries.

However, they do not take care of the description of the content
of the policy (e.g., description of the specified components, the
system, etc). The adoption of a semantic web language can
overcome this limitation since it uses an ontology to describe the
content of the policies.
In general, table 1 shows a comparative between semantic and
non-semantic policy languages based on [9] and complemented
with our own analysis [6].

Table 1. Comparative analysis between semantic and
non-semantic policy languages

 Semantic
Languages

Non-Semantic
Languages

Abstraction Multiple levels Medium and low
level

Extensibility Easy and at runtime Complex and at
compile-time

Representability Complex
environments

Specific
environments

Readability Specialized tools Direct

Interoperation By common ontology By interfaces

Enforcement Complex Easy

Semantic approaches using RDF/OWL (see Section 4) as
standards for policy representation enable runtime extensibility
and adaptability of the system, as well as the ability to analyse
policies relating to entities described at different levels of
abstraction. The representation facilitates careful reasoning about
policy disclosure, conflict detection, and harmonization about
domain structure and concepts. However, it is required complex
policy automation mechanisms for enforcement.

4. SEMANTIC SECURITY POLICY
LANGUAGES
As stated before, security policies can be specified at different
levels of abstraction. The process starts with the definition of a
business security policy. This can be the case of the next
authorization security policy, which is defined in natural
language: “Permit the access to the e-payment service, if the user
is in the group of customers registered for this service”.
Next, the security policy is usually expressed by a policy
administrator as a set of IF-THEN policy rules, for example: IF
((<Requester> is member of Payment Customers) AND
(<Server> is member of Payment Servers)) THEN (<Requester>
granted access to <Server>)
The policy languages we will be analyzing in this section are able
to specify several types of security policies and will be used to
provide policy examples related to this case study.
Although many semantic policy specifications exist, we have
selected three of them as they are considered nowadays as
promising options: KAoS, Rei and SWRL.

4.1 KAoS
KAoS [10] is a collection of services and tools that allow for the
specification, management, conflict resolution, and enforcement

Policy Management for the Web WWW 2005

10 May 2005 62

of deontic-logic-based policies within domains describing
organizations of human, agent, and other computational actors.

KAoS uses ontology concepts encoded in OWL to build policies.
The KAoS Policy Service distinguishes between authorization
policies and obligation policies. The applicability of the policy is
defined by a set of conditions or situations whose definition can
contain components specifying required history, state and
currently undertaken action. In the case of the obligation policy
the obligated action can be annotated with different constraints
restricting possibilities of its fulfilment.

The current version of the KAoS Policy Ontologies (KPO)
defines basic ontologies for actions, conditions, actors, various
entities related to actions, and policies. It is expected that for a
given application, the ontologies will be further extended with
additional classes, individuals, and rules.

Figure 1 shows an example of the type of policy that
administrators can specify using KAoS. It is related with the case
study described earlier.

<owl:Class rdf:ID="PaymentAuthAction">
<owl:intersectionOf rdf:parseType="owl:collection">
 <owl:Class rdf:about="&action;AccessAction"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&action;#performedBy"/>
 <owl:toClass
 rdf:resource="&domains;MembersOfPayCustomer"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&action;#performedOn"/>
 <owl:toClass

 rdf:resource="&domains;MembersOfPayServer"/>
 </owl:Restriction>
</owl:intersectionOf>
</owl:Class>
<policy:PosAuthorizationPolicy rdf:ID=”PaymentAuthPolicy1”>
 <policy:controls rdf:ID=”PaymentAuthAction”/>
 <policy:hasSiteOfEnforcement rdf:resource=”#TargetSite”/>
 <policy:hasPriority>1</policy:hasPriority>
</policy:PosAuthorizationPolicy>

Figure 1. Example of policy representation in KAoS
KAoS defines a Policy Framework that includes the following
functionality:
� Creating/editing of policies using KAoS Policy

Administration Tool (KPAT). KPAT implements a graphical
user interface to policy and domain management functionality.

� Storing, de-conflicting and querying policies using KaoS
Directory Service.

� Distribution of policies to Guard, which acts as a policy
decision point.

� Policy enforcement/disclosure mechanism, i.e. finding out
which policies apply to a given situation.

Every agent in the system is associated with a Guard. When
an action is requested, the Guard is automatically queried to
check whether the action is authorized based on the current
policies and, if not, the action is prevented by various
enforcement mechanisms. Policy enforcement requires the ability

to monitor and intercept actions, and allow or disallow them
based on a given set of policies. While the rest of the KAoS
architecture is generic across different platforms, enforcement
mechanisms are necessarily specific to the way the platform
works.

4.2 Rei
Rei [5] is a policy framework that integrates support for policy
specification, analysis and reasoning. Its deontic-logic-based
policy language allows users to express and represent the
concepts of rights, prohibitions, obligations, and dispensations. In
addition, Rei permits users to specify policies that are defined as
rules associating an entity of a managed domain with its set of
rights, prohibitions, obligations, and dispensations.

Rei provides a policy specification language in OWL-Lite that
allows users to develop declarative policies over domain specific
ontologies in RDF, DAML+OIL and OWL.

A policy primarily includes a list of granting and a context used to
define the policy domain. A granting associates a set of
constraints with a deontic object to form a policy rule. This allows
reuse of deontic objects in different policies with different
constraints and actors. A deontic object represents permissions,
prohibitions, obligations and dispensations over entities in the
policy domain. It includes constructs for describing what action
(or set of actions) the deontic is described over, who the potential
actor (or set of actors) of the action is and under what conditions
is the deontic object applicable.

An action is one of the most important in the Rei specifications as
policies are described over possible actions in the domain. The
domain actions describe application or domain specific actions,
whereas the speech acts are primarily used for dynamic and
remote policy management.

There are six subclasses of SpeechAct: Delegate, Revoke,
Request, Cancel, Command, and Promise. A valid delegation
leads to a new permission. Similarly, a revocation speech act
nullifies an existing permission (whether policy based or
delegation based) by causing a prohibition. An entity can request
another entity for a permission, which if accepted causes a
delegation, or to perform an action on its behalf, which if
accepted causes an obligation. An entity can also cancel any
previously made request, which leads to a revocation and/or a
dispensation. A command causes an obligation on the recipient
and the promise causes an obligation on the sender.

To enable dynamic conflict resolution, Rei also includes meta-
policy specifications, namely setting the modality preference
(negative over positive or vice versa) or stating the priority
between rules within a policy or between policies themselves.

Figure 2 shows an example to illustrate the policy representation
in Rei. It is related with the case study described earlier.

<constraint:SimpleConstraint rdf:ID=”IsPayCustomer”
 constraint:subject=”#RequesterVar”
 constraint:predicate=”&example;memberOf”
 constraint:object=”&example;payCustomer”/>
<constraint:SimpleConstraint rdf:ID=”IsPayServer”
 constraint:subject=”#PayServerVar”
 constraint:predicate=”&example;memberOf”
 constraint:object=”&example;payServer”/>

Policy Management for the Web WWW 2005

10 May 2005 63

<constraint:And rdf:ID=”ArePayCustomerAndPayServer”
 constraint:first=”#IsPayCustomer”
 constraint:second=”#IsPayServer”/>
<deontic:Permission rdf:ID=”PayServerPermission”>
 <deontic:actor rdf:resource=”#RequesterVar”/>
 <deontic:action rdf:resource=”&example;access”/>
 <deontic:constraint
 rdf:resource=”#ArePayCustomerAndPayServer”/>
</deontic:Permission>
<policy:Policy rdf:ID=”PaymentAuthPolicy1”>
 <policy:grants rdf:resource=”#PayServerPermission”/>
 </policy:Policy>

Figure 2. Example of policy representation in Rei
The Rei framework provides a policy engine that reasons about
the policy specifications. The engine accepts policy specification
in both the Rei language and in RDF-S [1], consistent with the
Rei ontology. Specifically, the engine automatically translates the
RDF specification into triplets of the form (subject, predicate,
object). The engine also accepts additional domain-dependent
information in any semantic language that can then be converted
into this recognizable form of triplet. The engine allows queries
according to the Prolog language about any policies, meta-
policies, and domain dependent knowledge that have been loaded
in its knowledge base.
The Rei framework does not provide an enforcement model. In
fact, the policy engine has not been designed to enforce the
policies but only to reason about them and reply to queries.

4.3 SWRL
Semantic Web Rule Language (SWRL) [8] is based on a
combination of the OWL DL and OWL Lite sublanguages of the
OWL with the Unary/Binary Datalog RuleML sublanguages.
SWRL extends the OWL abstract syntax to include a high-level
abstract syntax for Horn-like rules. A model-theoretic semantics
is given to provide the formal meaning for OWL ontologies
including rules written in this abstract syntax.
We distinguish between the following facts/rules for policy
representation:
� Structural/organizational facts and rules. These rules are

used to encode domain specific ontologies.
� Service definition facts and rules, provided with links to the

structural rules and facts.
� Task-specific rules and facts, provided by the service clients.
SWRL is defined by an XML syntax based on RuleML and the
OWL XML Presentation Syntax. The rule syntax is illustrated
with the following example related with the case study described
earlier.
<ruleml:imp>
 <ruleml:_head>
 <swrlx:individualPropertyAtom
 swrlx:property="GrantedAccess">
 <ruleml:var>requester</ruleml:var>
 <ruleml:var>server</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
 <ruleml:_body>
 <swrlx:classAtom>
 <owlx:Class owlx:name="User" />
 <ruleml:var>requester</ruleml:var>
 </swrlx:classAtom>

 <swrlx:classAtom>
 <owlx:Class owlx:name="Server" />
 <ruleml:var>server</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom swrlx:property="Member">
 <ruleml:var>requester</ruleml:var>
 <owlx:Individual owlx:name="#PayCustomer" />
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="Member">
 <ruleml:var>server</ruleml:var>
 <owlx:Individual owlx:name="#PayServer" />
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
</ruleml:imp>

Figure 3. Example of policy representation in SWRL
A useful restriction in the form of the rules is to limit antecedent
and consequent classAtoms to be named classes, where the
classes are defined purely in OWL. Adhering to this format makes
it easier to translate rules to or from existing or future rule
systems, including Prolog.

4.4 Comparative Analysis
Table 2 shows a comparison of the aforementioned security

policy languages. Many aspects can be identified as part of this
comparison, although the most relevant are:

� Approach. Two types of approaches have been identified:
rule-based and deontic logic-based.

� Specification language. It can be XML, RDF-S or OWL.
� Tools for policy specification.
� Reasoning engine for policy analysis and verification.
� Enforcement support to the policy deployment.
Table 2. Comparative analysis between KAoS, SWRL and Rei

OWL has a limited way of defining restrictions using the tag
owl:Restriction. This limitation also appears in KAoS, but SWRL
overcomes it by the extending the set of OWL axioms including
horn-like rules. On the other hand, SWRL is not limited to deontic
policies as it happens in Rei and KAoS.

5. USING CIM ONTOLOGY WITH
SEMANTIC LANGUAGES
The Common Information Model (CIM) is an approach from the
DMTF that applies the basic structuring and conceptualization
techniques of the object-oriented paradigm to provide a common

 KAoS Rei SWRL

Approach Deontic Logic Deontic Logic +
Rules Rules

Specification
language DAML/OWL Prolog-like

syntax + RDF-S

Prolog-like
syntax +

OWL

Tools for
specification KPAT No No

Reasoning KAoS engine Prolog engine Prolog engine

Enforcement Supported External
Functionality

External
Functionality

Policy Management for the Web WWW 2005

10 May 2005 64

definition of management-related information for systems,
networks, users, and services.

The CIM model is independent of any implementation or
specification. However, for an information model to be useful, it
must be mapped into some implementation. As Figure 4 showed,
CIM can be mapped to several structured specifications.

CIM Meta Model
(class, property, association ,…)

CIM Models
(core, common, extensions)

Meta Model
Level

Models Level

CIM
Implementation

Level XMLPIBMIB OWL
Figure 4. CIM modelling levels

An advantage of CIM is that the model can be mapped to
structured specifications such as OWL, which can then be used to
define management resources for Web Information System
(WIS). Also note that the mapping of CIM to a valid
representation for WIS is beneficial, since it permits to model
WIS components using the DMTF methodology and hence obtain
a standard and interoperable representation of it.
According to our approach, regarding the mapping of CIM into
OWL, the main principles identified as part of this process are:
� Every CIM class generates a new OWL class using the tag

<owl:Class>.
� Every CIM generation (inheritance) is expressed using the

tag <rdfs:subClassOf>.
� Every CIM class attribute is specified using the tag

<owl:DatatypeProperty> for literal values or
<owl:ObjectProperty> as references to class instances.

� Every CIM association is expressed as an OWL class with
two <owl:ObjectProperty> where their identifiers (i.e.,
<rdf:ID>) are the names of the properties of the CIM
association; this is the most suitable general-purpose
mechanism currently available.

An example of these transformations for the CIM classes related
to the user authorization is now presented and explained. CIM
defines the classes depicted in Figure 5 to represent the
management concepts that are related to an authorization
privilege. Privilege is the base class for all types of activities,
which are granted or denied to a subject by a target.
Authorized-Privilege is the specific subclass for the authorization
activity.

(See Core Model)
ManagedElement

Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities : uint16 []
ActivityQualifiers : string []
QualifierFormats: uint16 []

AuthorizedTarget

*

*

*

*

AuthorizedPrivilege

Collection

(See Core Model)

Role

CreationClassName: string {key}
Name: string {key}
BusinessCategory: string
CommonName: string {Req'd}

AuthorizedSubject

Figure 5. UML diagram of User-Authentication classes

Whether an individual Privilege is granted or denied is defined
using the PrivilegeGranted boolean. The association of subjects to
AuhorizedPrivileges is accomplished explicitly via the association
AuthorizedSubject. The entities that are protected (targets) can be
similarly defined via the association AuthorizedTarget. Note that
AuthorizedPrivilege and its AuthorizedSubject/Target
associations provide a static mechanism to represent authorization
policies.
An example of the mapping of these CIM classes to OWL is
illustrated in the Figure 6. This example shows a fragment of the
mapping of CIM class Privilege and CIM association
AuthorizedSubject.
<owl:Class rdf:ID=”CIM_Privilege”>
 <rdfs:subClassOf
 rdf:resource=”CIM_ManagedElement”/>
</owl:Class>
<owl:Class rdf:ID=”CIM_AuthorizedSubject”>
 <rdfs:subClassOf rdf:resource=”LogicalEntity”/>
</owl:Class>
<rdf:DatatypeProperty rdf:ID=”InstanceID”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”String”/>
</rdf:DatatypeProperty>
<rdf:DatatypeProperty rdf:ID=”PrivilegeGranted”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”Boolean”/>
</rdf:DatatypeProperty>
<rdf:DatatypeProperty rdf:ID=”Activities”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”Uint16”/>
</rdf:DatatypeProperty>
<rdf:DatatypeProperty rdf:ID=”ActivityQualifers”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”String”/>
</rdf:DatatypeProperty>
<rdf:DatatypeProperty rdf:ID=”QualiferFormats”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”Uint16”/>
</rdf:DatatypeProperty>
<rdf:ObjectProperty rdf:ID=”Privilege”>
 <rdfs:domain rdf:resource=”CIM_AuthorizedSubject”/>
 <rdfs:range rdf:resource=”CIM_ManagedElement”/>
</rdf:ObjectProperty>
<rdf:ObjectProperty rdf:ID=”PrivilegedElement”>
 <rdfs:domain rdf:resource=”CIM_AuthorizedSubject”/>
 <rdfs:range rdf:resource=”CIM_ManagedElement”/>
</rdf:ObjectProperty>

Figure 6. A fragment of the mapping of Privilege and
AuthorizedSubject into OWL

Note that the ontological representation of CIM (i.e., OWL
representation) permits to represent a CIM ontology that can be
used in semantic policy languages (e.g., SWRL).
SWRL uses ontology concepts encoded in OWL to build rules. It
can be extended with the OWL CIM ontology. For example, rule
syntax is illustrated in the Figure 7 related with the case study
described earlier.
<ruleml:imp>
 <ruleml:_body>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_Role"/>
 <ruleml:var>server</ruleml:var>

Policy Management for the Web WWW 2005

10 May 2005 65

 </swrlx:classAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_Role" />
 <ruleml:var>requester</ruleml:var>
 </swrlx:classAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_AuthorizedPrivilege" />
 <ruleml:var>privilege</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom swrlx:property="Name">
 <ruleml:var>server</ruleml:var>
 <owlx:Individual owlx:name="#PayServer" />
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="Name">
 <ruleml:var>requester</ruleml:var>
 <owlx:Individual owlx:name="#PayCustomer" />
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="Name">
 <ruleml:var>privilege</ruleml:var>
 <owlx:Individual owlx:name="#GrantedAccess" />
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_AuthorizedTarget" />
 <ruleml:var>authtarget</ruleml:var>
 </swrlx:classAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_AuthorizedSubject" />
 <ruleml:var>authsubject</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom swrlx:property="Privilege">
 <ruleml:var>authtarget</ruleml:var>
 <ruleml:var>privilege</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="TargetElement">
 <ruleml:var>authtarget</ruleml:var>
 <ruleml:var>server</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="Privilege">
 <ruleml:var>authsubject</ruleml:var>
 <ruleml:var>privilege</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="PrivilegedElement">
 <ruleml:var>authsubject</ruleml:var>
 <ruleml:var>requester</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
</ruleml:imp>
Figure 7. Example of policy representation in SWRL using the

CIM ontology

6. CONCLUSIONS
This paper has provided some discussions of the most relevant
security-aware semantic specification languages and information
models. Our perspective on the main issues and problems of each
of them has also been presented, based on different criteria such
as their approach or the specification technique they use. It has
also presented an approach for using CIM ontology with the
semantic languages.

Our future work is being planned to investigate how the CIM
information model can be used as ontology for other semantic
security policy languages. In this sense the current research work
undertaken in the POSITIF EU IST project [12] is gathering
requirements of security management in web and information
systems and defining, based on the work presented in this paper, a
semantic security policy language able to formally define the
desired security policy.

7. ACKNOWLEDGMENTS
This work has been partially funded by the EU POSITIF
(Policy-based Security Tools and Framework) IST project
(IST-2002-002314).

8. REFERENCES
[1] Brickley, D., and Guha, R. V. (2004, January). Rdf

vocabulary description language 1.0: Rdf schema. Technical
report, W3C Working Draft.

[2] Connolly, D., Dean, M., Harmelen, F., Hendler, J., Horrocks,
I., McGuinness, D. L., Patel-Scneider, P. F., and Stein, L. A.
(2003, February). Web ontology language (owl) reference
version 1.0. Technical report, W3C Working Draft.

[3] Damianou, N., Dulay, N., et al. (2001). The Ponder Policy
Specification Language. Policy 2001: Workshop on Policies
for Distributed Systems and Networks. Springer-Verlag.

[4] Distributed Management Task Force, inc. (2005). Common
Information Model (CIM) Standards, version 2.9.0.

[5] Kagal, L., Finin, T., and Johshi, A. (2003). A Policy
Language for Pervasive Computing Environment. Policy
2003: Workshop on Policies for Distributed Systems and
Networks. Springer-Verlag.

[6] Martinez Perez, G., Garcia Clemente, F.J., Gomez Skarmeta,
A.F. (2005), Policy-Based Management of Web and
Information Systems Security: an Emerging Technology,
Idea Group Inc., in press.

[7] OASIS (2004, December). Extensible Access Control
Markup Language (XACML), version 2.0, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[8] The Rule Markup Initiative (2004, May). SWRL: A
Semantic Web Rule Language Combining OWL and
RuleML, version 0.6.

[9] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri,
N., and Uszok, A. (2003). Semantic Web languages for
policy representation and reasoning: A comparison of KAoS,
Rei, and Ponder. The Semantic Web—ISWC 2003.
Proceedings of the Second International Semantic Web
Conference. Springer-Verlag.

[10] Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., et al. (2003).
KAoS Policy and Domain Services: Toward a Description-
Logic Approach to Policy Representation, Deconfliction, and
Enforcement. Policy 2003: Workshop on Policies for
Distributed Systems and Networks. Springer-Verlag.

[11] W3C. (1999, February). Resource description framework
(rdf), data model and syntax. W3C Recommendation.

[12] EU IST POSITIF (Policy-based Security Tools and
Framework) Project, http://www.positif.org/

Policy Management for the Web WWW 2005

10 May 2005 66

RDF Query for Policy Management
Eric Prud'hommeaux

W3C
eric@w3.org

ABSTRACT
Queries informing policy management and enforcement must address trust issues. The RDF query language
SPARQL provides access to provenance information and a reasonably rich set of constraints. This document
describes how a policy management system can use SPARQL to reliably investigate and enforce policies.

Keywords
RDF Query, SPARQL, Policy Management

Introduction
RDF was designed as a description language for web resources. As such, it is useful for describing policies
associated with resources. The RDF Data Access Working Group is standardizing the SPARQL Query Language
for RDF [SPARQL]. The SPARQL language, used to access simple triple stores or inferred triples, is useful for
expressing/testing many practical policies.
It is essential that any agent enforcing policies trust its information. In a heterogeneous trust environment such as
the semantic web, the chain of custody of policy data must be rigorously examined. Many RDF stores maintain the
provenance of RDF data and SPARQL provides access to that information. Queries may interrogate the provenance
of query solutions or specify that the solutions come from particular sources. This capability meets the reasonable
requirements of semantic web policy agents.
Some policy languages, such as KAoS [KAoS], or XML Advanced Electronic Signatures (XAdES) [XAdES],
include expiries or durations. SPARQL expresses numeric, string pattern, and datetime value constraints, which can
be used to determine whether a given policy is applicable, or select solutions from only the relevant policies.
SPARQL also provides a set of logical expressions, including disjunction and optionally bound patterns. Used in
conjunction with an operator to test whether a variable was not bound in a pattern, SPARQL provides a limited
form of negation as failure (NAF). This feature is useful for practical reasons, limiting the amount of unwanted data
the client consumes, but also to enable the client to avoid receiving information that would violate some policy.
SPARQL is not the only RDF query language, nor is it the most expressive. It is, however, the product of
standardization; developers may count on reasonable conformance and vendor independence. It is beyond the scope
of this document to compare the RDF query languages.

Provenance Constraints
A simple example of a policy is an access control list that associates a group of principals with a set of operations.
The W3C site uses a simple ontology for expressing different people's right to perform HTTP operations on
resources. For example, the ACLs for this document are expressed as:

@prefix rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix : <http://www.w3.org/2001/02/acls/ns#>.
[a :resourceAccessRule;
 :access :racl, :head, :get, :options, :trace;
 :accessor <http://www.w3.org/Systems/db/webId?all=all>;
 :hasAccessTo <http://www.w3.org/2005/02/14-PMQuery/>
] .
[a :resourceAccessRule;
 :access :chacl, :racl, :head, :get, :put, :delete, :connect, :options, :trace;
 :accessor <http://www.w3.org/Systems/db/webId?group=w3t_passwords>;
 :hasAccessTo <http://www.w3.org/2005/02/14-PMQuery/>
] .

This first ResourceAccessRule grants the group http://www.w3.org/Systems/db/webId?all=all the
privileges to perform the HTTP operations HEAD, GET, OPTIONS, TRACE on the resource
http://www.w3.org/2005/02/14-PMQuery. (The "racl" privilege is not an HTTP operation, but instead
the meta-operation of reading the ACLs for that resource. The second ResourceAccessRule grants some additional
HTTP operations, PUT and DELETE, to the group
http://www.w3.org/Systems/db/webId?group=w3t_passwords. This group may chacl, change the
ACLs for the resource.

Policy Management for the Web WWW 2005

10 May 2005 67

Elsewhere the membership of the group
http://www.w3.org/Systems/db/webId?group=w3t_passwords is enumerated, along with various
credentials.

<http://www.w3.org/Systems/db/webId?group=w3t_passwords>
 :includes <http://www.w3.org/Systems/db/webId?user=eric> .
<http://www.w3.org/Systems/db/webId?user=eric>
 a :user ;
 :publicKey "30 82 01 0a 02 82 01 01 00..." .

Thus, the principal http://www.w3.org/Systems/db/webId?user=eric is a member of a group that
has the ability to PUT this document, which is fortunate because PUT is the HTTP operation for updating a
resource and ...eric is the author of this document.
The author has appropriate credentials to prove that he is the ...eric in the above list, and thus, has permission
to change the documents. The group http://www.w3.org/Systems/db/webId?all=all is a special
group understood by the W3C web servers to mean everybody, regardless of credentials or lack thereof.
When the user eric attempts to perform a PUT operation on this document on the W3C site, the site machinery
verifies the credentials, verifies that the request action is within those allowed for this user for this resource, and
grants access. So far, we haven't gone beyond what ordinary HTTP and DAV servers do every day. We have,
however, made it expressible in a language that transcends server implementations and sites.
If a proxy site were to cache some or all of the W3C web site with the agreement that they would enforce the
appropriate ACLs policies, they could use publicly available W3C ACLs policy information. If they were to query
a public RDF aggregator, a semantic search engine, they would need to query for the provenance information
associated with the policies:

PREFIX s: <http://www.w3.org/2001/02/acls/ns#>
ASK
 WHERE { GRAPH <http://www.w3.org/2005/02/14-PMQuery/,access?w3c_display=13>
 { ?policy s:access s:put .
 ?policy s:accessor ?group .
 ?policy s:hasAccessTo <http://www.w3.org/2005/02/14-PMQuery/> .
 ?group s:includes ?user .
 ?user s:publicKey "30 82 01 0a 02 82 01 01 00..." } }

This query simply specifies that everything in the access recipe must come from a source known to be authoritative
for that resource. To make the scenario much more interesting, we can abstract the query, introducing multiple trust
domains:

PREFIX s: <http://www.w3.org/2001/02/acls/ns#>
PREFIX meta: <http://www.w3.org/2002/xx#>
ASK
 WHERE {{ ?resource meta:keywords ?keywords .
 ?resource meta:abstract ?abstract .
 FILTER regex(?keywords, "SPARQL") &&
 regex(?abstract, "policy management") } .
 GRAPH <http://policies.example/knownSites.rdf>
 { ?resource s:policyAuthority ?policyAuth } .
 GRAPH ?policyAuth
 { ?policy s:access s:put .
 ?policy s:accessor ?group .
 ?policy s:hasAccessTo ?resource .
 ?group s:includes ?user .
 ?user s:publicKey "30 82 01 0a 02 82 01 01 00..." }}

Here we have asked the web for a document with a keyword "SPARQL" and the phrase "policy management" in
the abstract. (This document has meta tags for the keywords and abstract.) Next we asked a trusted resource
knownSites.rdf for the corresponding policy authority. Finally, we checked that authority to see what access
privileges are extended to the user holding a particular public key. This query takes the appropriate conservative
approach of failing to provide any access if the chain of trust cannot being established.
Expressing our policy in RDF allows us to develop arbitrarily complex trust chains. Evolving the authenticating
software is as easy as mirroring new models in the SPARQL query, minimizing vulnerability to implementation
errors and reducing deployment time and costs.

Mixing SPARQL and Policy Rules

Policy Management for the Web WWW 2005

10 May 2005 68

Some policy languages exceed the expressivity of SPARQL, or are impractical to enumerate in SPARQL. Since
SPARQL may operate over a graph created by inference, it can be used to access the inferences of any policy
language that produces triples. A policy protocol using SPARQL may rely on it simply for a standard query
interface, or for matching some or all of the rule conditions. The policy protocol may trade off between expressing
the policy conditions in SPARQL vs. a rule language. For example, a REI [REI] policy expression can predicate a
Permission on some conditions:

...
<action:Delegation rdf:ID="TimToCSMembers">
 <action:sender rdf:resource="&inst;TimFinin"/>
 <action:receiver rdf:resource="#PersonVar"/>
 <action:content>
 <deontic:Permission>
 <deontic:actor rdf:resource="#PersonVar"/>
 <deontic:action rdf:resource="#ObjectVar"/>
 </deontic:Permission>
 </action:content>
 <action:condition>
 <constraint:And>
 <constraint:first rdf:resource="#IsMemberOfCS"/>
 <constraint:second rdf:resource="#IsFacultyPrinting"/>
 </constraint:And>
 </action:condition>
</action:Delegation>
<constraint:SimpleConstraint rdf:ID="IsMemberOfCS">
 <constraint:subject rdf:resource="#PersonVar"/>
 <constraint:predicate rdf:resource="&univ;affiliation"/>
 <constraint:object rdf:resource="&univ;CSDept"/>
</constraint:SimpleConstraint>
<constraint:SimpleConstraint rdf:ID="IsFacultyPrinting">
 <constraint:subject rdf:resource="#ObjectVar"/>
 <constraint:predicate rdf:resource="&rdf;type"/>
 <constraint:object rdf:resource="#FacultyPrinting"/>
</constraint:SimpleConstraint>
...

SPARQL's terse syntax provides a very short expression of the above policy:

...
COLLECT ?sender ?receiver
 WHERE { ?permit rei:sender ?sender .
 ?permit rei:receiver ?receiver .
 ?permit rei:actor ?person .
 ?permit rei:action ?object .
 ?person univ:affiliation univ:CSDept.
 ?object rdf:type p:FacultyPrinting }

Languages with rule heads that are chained to further rules will not be well-represented in SPARQL as SPARQL is
not a rules language. In such cases, it would only be useful to express as queries the questions that the application
ultimately needs resolved, such as, "is the client in a class that has access to a given resource?"

Value Constraints
Many policy languages express a duration of validity. The following excerpt from KAoS states a policy update time
stamp:

<policy:PosAuthorizationPolicy>
 <policy:controls rdf:resource="#GET" />
 <policy:hasSiteOfEnforcement rdf:resource="#w3site" />
 <policy:hasPriority>10</policy:hasPriority>
 <policy:hasUpdateTimeStamp>2006-01-01T00:00:00Z</policy:hasUpdateTimeStamp>
</policy:NegAuthorizationPolicy>

A SPARQL query looking for a current policy would rely on built-in dateTime comparison functions:

...
 WHERE { ?pol policy:hasUpdateTimeStamp ?update .
 FILTER ?update > 2005-04-17T13:34:52Z }

SPARQL also provides numeric comparison and string regular expression operators.

Policy Management for the Web WWW 2005

10 May 2005 69

Negation
The PRIME project concerns itself with privacy and identity management in Europe. The design of SPARQL is
informed by the needs of PRIME. In particular, a participant in the project, Thomas Roessler, submitted this use
case [PRIME] to the RDF Data Access Working Group:

A mobile phone provider offers location and contact information to third parties which, in turn,
offer location-based advertising by mobile phone short message. An airline operates an airport
restaurant as a subsidiary, which wants to advertise a special gourmet meal based on pork to
members of the airline's frequent flier program who are nearby the restaurant, unless these have
indicated halal, kosher, or vegetarian meal preferences.
(Note that meal preferences give hints about religious convictions and health conditions, and
should as such not be processed by a restaurant's advertising department.)

This use case demonstrates not a strict policy established by the traveler, but instead a sensitivity on the part of the
airline toward the traveler's implicit policy. The SPARQL expressivity that this query leverages is the ability to
filter solutions that do not include a specified statement (specifically, whether the person has expressed a preference
for any of a set of special meals).

PREFIX flt: <http://someAirline.org/ns#>
SELECT ?smsAddr
 WHERE {<http://someAirline.org/flt217/20050215#> flt:traveler ?traveler .
 ?traveler flt:smsAddr ?smsAddr .
 OPTIONAL {?traveler flt:mealReq ?mealReq .
 FILTER !BOUND(?mealReq) }

The expressivity for NAF may seem awkward, but it is effective, and specifically addressed in the specification. By
restricting the results to not include any solutions where the traveler had a flt:mealReq, the restaurant
avoided moving more data than necessary and avoided having to local filtering of the data. These are obvious
motivations for including NAF in the language. More importantly, the restaurant was able to avoid learning
travelers' religious convictions by filtering out results which implied a religious conviction.
Designing for a query language that can express negation as failure allows policy ontologists to annotate entities
with types of confidentiality. Given appropriate terms, people can indicate that some material is not intended for
certain audiences, allowing school library web browsers to perform content selection. These terms can advertise
increased privacy preferences; sympathetic agents can voluntarily comply with these preferences.
Decisions based on NAF are non-monotonic and must be regarded as uncertain. Agents working with partial
knowledge or potentially incomplete inference can make incorrect decisions. In the above example, the restaurant
may advertise a pork meal to a traveler who keeps kosher and who has not filled out his or her meal preference, or a
library browser may let a user see content that would have hidden, had the browser had access to more information.
In many cases, policies have a conservative response to incomplete knowledge. For instance, a principal will be
denied access to a resource if it is either not known that the principal should have access or it is known that the
principal should not have access. For this reason, SPARQL's use of default negation is a practical alternative to
using OWL's complementOf for classical negation.

Additional Expressivity: Disjunction and Optional
Disjunction and Optional graph patterns in SPARQL enable complex policies to be tested efficiently. Any query
involving disjunction (called Union in SPARQL) or optional patterns could be expressed as a set queries with
purely conjunctive graph patterns. This seemingly redundant expressivity allows many complex policies to be
expressed as a single query, providing an intuitive interface and an efficient protocol.
SPARQL also has extensible value restrictions. The expressivity of the restrictions could be extended to
calculations such as geographical radius, repeated temporal intervals or arbitrary mathematical functions of any set
of parameters derived from the graph. These extension functions will not be available across all SPARQL
implementations, but they can be used to express more complex policy tests within the SPARQL syntax.

Conclusions
This document has described two use cases where SPARQL's provenance queries support a rigorous enforcement of
policies. The provenance information in the ACLs query allowed the suspicious agent to establish a chain of trust
between a principal requesting access and a policy for that resource. The KAoS example showed how value
constraints usefully enforce policies with expiries, and the PRIME example demonstrated how query support for
negation allows policy data to be added to increase privacy.
Designers of policy protocols will need to provide a query mechanism of some sort to allow applications to act on

Policy Management for the Web WWW 2005

10 May 2005 70

policies. Using SPARQL provides the advantages of using a standard query language, as well as the opportunity to
leverage SPARQL implementations to provide some or all of the calculations. While every language makes
trade-offs between complexity and expressivity, it is the author's opinion that deployment of SPARQL agents will
provide a strong foundation for a policy aware Web.

REFERENCES
[SPARQL] Andy Seaborne, Eric Prud'hommeaux, SPARQL Query Language, ,
http://www.w3.org/TR/rdf-sparql-query/
[KAoS] M. Johnson, et. al., KAoS Semantic Policy and Domain Services: An Application of DAML to Web
Services-Based Grid Architectures, , http://www.agentus.com/WSABE2003/program/johnson.pdf
[REI] Lalana Kagal, Rei Ontology Specifications, Ver 2.0, , http://www.cs.umbc.edu/~lkagal1/rei/
[XAdES] Cruellas et. al., XML Advanced Electronic Signatures (XAdES), , http://www.w3.org/TR/XAdES/
[PRIME] Thomas Roessler, UNSAID and OR use cases, from PRIME, ,
http://lists.w3.org/Archives/Public/public-rdf-dawg-comments/2004Nov/0016

Policy Management for the Web WWW 2005

10 May 2005 71

Application Report: An extensible policy editing API for
privacy and identity management policies

Giles Hogben,
European Commission,
Joint Research Centre,

Via Enrico Fermi 1,
21020 VA, Ispra, Italy,

+39 0332789187

giles.hogben@jrc.it

ABSTRACT
This paper describes an open source policy editing API, which
has been developed for use with privacy policies including
P3P1.1 policies, semantic web privacy policies and enterprise
privacy policies. The API has been designed to be extensible to a
wide range of policy editors for access privacy and identity
management. It is also designed to support the use of ontologies
to specify validated and updateable human readable translations
of policy elements. It provides libraries for editing any kind of
policy which is associated to URI resources and which describes
behaviour in terms of discrete statements. The paper gives a brief
overview of new features of the API which have allowed us to
generalize its application.

Categories and Subject Descriptors
D.2.6 [Software]: Programming Environments, Graphical
Environments

General Terms
Management, Design Security, Human Factors, Languages

Keywords
Policy Authoring, Applications, Semantic Web Groundings

This work was supported by the IST PRIME project; it
represents the view of the authors only.

1. INTRODUCTION
This paper is a short application report on a policy editing
framework produced by the Joint Research Centre as part of the
PRIME project. Many policy editors already exist in the context
of P3P 1.0 [1], so we concentrate in this paper on the innovations
we have introduced in order to extend the policy editing API from
a P3P editor to other types of policy editing such as enterprise
access control (privacy layer). We also discuss the introduction of
a legal hints mechanism.

2. Editor usage scenarios
The editor has been designed for the following use cases:

2.1 P3P 1.0 Policies
The editor is designed to be able to edit P3P 1.0 policies and to
output Policy Reference Files specifying which P3P 1.0 policies
apply to which sets of web resources. It is also designed to be able

to validate policies, and to give legal hints to policy writers about
points of interest in their jurisdiction.

2.2 P3P 1.1 Policies
The editor is designed to integrate the enhancements provided by
P3P1.1.[2] These are mainly in the area of the human readable
strings corresponding to policy concepts, but also include a new
data schema format.

2.3 Semantic web P3P style policies
The editor API is also designed to be able to produce policies
using P3P semantics translated into OWL (as described in [3]).

2.4 Enterprise access control (XACML style)
policies
This is the most challenging adaptation of the editor. We decided
that there are sufficient similarities in the model of P3P and
experimental privacy enhanced access control policy languages
such as EPAL [4], and [5] to be able to justify an adaptation of the
API to support editing of this type of policy.
The specification we are using is the working specification for the
Prime [6] project access control module. Although this is not
currently available publicly, it is however close to the
specification described in the publicly available document [4] in
terms of policy editing requirements. The working specification
of [6] conforms to the requirements stated in [7].
In general terms, the policy framework comprises Access Control
Policies, Data Release Policies and Data Handling Policies. All
these operate over RDF data stores and use prolog type semantics
encapsulated in XML syntax for creating inferences over access-
control rules.
 Throughout this document, we refer to this type of policy as
"XACML style" (XACML:Oasis standard – vide
http://www.oasis-open.org) as this is the closest existing standard
(apart from the W3C member submission, EPAL [4]). It is
important to note that the API requires access control policies of
this type to operate over RDF data with data typing via
RDF/OWL ontologies or P3P data schema syntax.

3. Policy editing interface API Components
3.1 Common features
Any API design always plays off simplicity against general
applicability. It is clearly not possible to build an API suitable for
building any conceivable type of policy. However, we have
managed to abstract the features of privacy and IDM policies,
including enterprise access control policy languages for privacy in

Policy Management for the Web WWW 2005

10 May 2005 72

mailto:giles.hogben@jrc.it

order to maximize reuse. The following features are common to
all types of policy and therefore represent the building blocks of
the policy editor API. The API uses the MVC (Model View
Controller) paradigm, which divides the management of the user
interface and storage objects into Business (Model), Interface
(View) and Events (Control). Before reading the following
sections, the reader may wish to refer to the end-to-end
walkthrough in section 4.

3.2 Resource-policy binding
A common feature of all the above policy types is the need to
associate rules or practice statements with groups of resources.
This defines which policy should be applied to which resources in
the data space. P3P policies, for example, use Policy reference
files to associate XML P3P policies with parts of web sites which
are resources groups. We found however that this model can also
be extended to semantic web and XACML style policies as
defined in section 2.4
XACML style policies are of 2 kinds:
a. Access control policies, which associate subject, condition,

action rules with abstract data types drawn from an ontology
describing data types and credentials. A set of policies
applies in a given context defined by the administrator. Such
policies contain rules of the form:
For data or credentials of type "prime:e-Healthcard", if the
accessing subject is a doctor who is employed in hospital x,
allow access with the following obligations….

b. Access control policies which represent user preferences on
data collected. These apply rules and obligations to specific
data instances.
Such policies apply rules and obligations to specific data
instances. For example
Delete data item X, after 10 years

The API applies the same model to all of the use case policies. In
each case, the editor is required to apply rules or statements to
groups of resources. In the case of the XACML style policies, the
groups of resources are either OWL concepts (defined by a URI –
scenario a. above) or RDF triples in a datastore (defined by
reification ids, or an RDF query – scenario b. above). We have
therefore abstracted the policy-resource association function in
the API as follows.
Every editor has 3 sub-windows (see figure 1 and 2) which are
managed by a set of extensible classes according to the MVC
model.
1. The resource grouping window (top left):
Shows a list of resource groups organized by namespace or site
domain. The underlying business object is the same for all types
of policy (an XML object stores the resource groups as named
patterns according to namespace), but these business objects can
then be transformed into customized mapping objects. In other
words, the business object abstracts Policy Reference Files for
P3P1.0 and allows it to be mapped into other format (e.g.
XACML targets).
The user interfaces used for capturing patterns may differ from
the default implementations but can customize API
implementationsn by extending the PatternInterface class, which
captures the specification of the content groups from the user.
Each resource group group defines a space of resources which can

be either web URI's (P3P and Semantic Web P3P), Ontology
concepts (XACML style a.) or RDF triple sets (XACML style b.).
In P3P, this corresponds to an area of a web domain or set of
domains. In semantic web based access control, this corresponds
to a space of resources.
2. The policies window:
Shows the policies available. This is just a list of policy names
associated to their logical identifiers (file system paths), which
can be dragged onto resource groups and can be double clicked
for editing the content of the policy, using a class conforming to
the policyeditor interface. This interface is completely
independent of the format and content of the policy and it is
therefore not foreseen that this would need to be extended.
3. The mappings window:
By dragging a policy onto a resource group, the user can associate
policies to resources. This association is then automatically
displayed in a third window, the mappings window. The storage
format for mappings is abstracted from the particular format it
will eventually be output in. For example in the case of P3P, this
abstraction will be mapped to a Policy Reference File. In the case
of semantic web based access control, it may for example be
mapped to a target statement within a policy. The API implements
this abstraction using the "publish" method of the mappings tree,
which currently only implements the transformation to a P3P
Policy Reference File, but can be overridden to provide other
transformations for example using XSLT to provide target
statements within XACML style policies.

Figure 1. P3P scenario

Policy Management for the Web WWW 2005

10 May 2005 73

Figure 2. Semantic Web Scenario

3.3 Statement handler
Upon opening a policy for editing, the user is presented with a list
of statements. Statements are derived directly from the XML
policy document in memory defining the policy being edited. So
in terms of the MVC architecture model, the XML document is
the model (Business object) and there is no further abstraction.
The API provides a statement management package, which
includes a class which abstracts the visualization of statements.
The class StatementType defines how human readable strings are
extracted from the XML document by means of a query string. It
also defines not only the content of the strings, but also how they
will be organized for display to the user.
In order to achieve this, the StatementType class defines the list
of attributes into which the statement is broken down. These may,
but are not required to correspond to XML attribute or tag names.
For example P3P StatementType definitions define how to extract
CONSEQUENCE, DATA, PURPOSE, RECIPIENT and
RETENTION attributes of the statement by means of XPATH
queries. This is done as follows:
Each Attribute object specifies XML or RDF queries and/or
procedural code which define its relationship to the user interface.
This allows the editor builder to define new types of statements
and attributes and their display to the user simply by defining
their attributes and queries which extract the display text.
Each attribute in a StatementViewer's AttributeList Array has a
getHRQueryString method, which returns the results an RDF or
XML query over the policy document (and may transform this
using Java code for display). This method returns the text to
display to the user to summarize the value of that attribute.
For example for P3P statements, getHRQueryString() for each
attribute returns a conversion to string of the node names returned
by the XPath queries:
".//*[local-name()='CONSEQUENCE']/*",
".//*[local-name()='DATA']/*"

".//*[local-name()='PURPOSE']/*"
Etc…
Separate XML and RDF flavours of these classes have been
defined in order that the query language is flexible.
Once the StatementViewer object for the policy editor is defined,
the API automatically creates a table displaying all non-hidden
attributes. It is assumed that statements are logically independent
objects i.e. that no inter-statement data (e.g. OR and AND) needs
to be displayed. These kind of booleans may be included in a
language but statements should be defined on a level whereby the
booleans are contained within each statement but do not connect
statements. StatementTypes can also be created dynamically if the
number of attributes is variable.
Attributes can be assigned visible or non visible status. For
example a P3P editor would not want to display the consequence
attribute of a statement in the statement summary table, so this
would be assigned hidden status.

Figure 3. StatementViewer

3.4 Statement wizard
StatementType attribute arrays (see 3.3) also define the stages of
the Statement wizard. The statement wizard proceeds through a
series of windows on a per attribute basis. The attribute array of
the StatementType therefore defines the stages of the statement
wizard. Statement wizards can also be defined using a swing card
layout to increase efficeincy.
Each attribute has a getViewer method, which uses classes
extending the abstract class AttributeEditorWindow to specify the
editing window to be displayed for that attribute.
The API provides 3 implementations of AttributeEditorWndow.
1. Typically a statement attribute editing window is a flat set of
possible values displayed as a set of strings with checkboxes next
to them. This uses a ConstrainedValueWindow The human
readable strings for this type of attribute editing window may be
defined according to an XML document or OWL ontology (See
section 4.5)

Policy Management for the Web WWW 2005

10 May 2005 74

Figure 4. ConstrainedValueWindow

2. A datatype editing window (See 3.5)
3. A plaintext editing window (e.g. for P3P consequence). The
type of window required is specified. Special editing windows
can be created to replace the default implementations.
The above default implementations can be used to define attribute
viewers.

3.5 Data typing schemes
Privacy and access control policies typically have to present the
user with an ontology hierarchy of increasingly detailed data
types to select from (an XML document is also understood here as
an informal ontology). The editor API abstracts this process so
that different data schemas can be used within the same view
window as long as they have a structure representable by a JTree.
The data type editing window displays the data type tree on the
left hand side and a list of selected types on the right hand side.
The user simply moves types from the tree into the list on the
right hand side. The elements in the list of types selected combine
to make a custom type. The list element objects store the tree path
as well as the leaf node selected so that they can be edited later.
The user can dynamically select different source files for the tree
representation.
The API provides the abstract DataSchemaTreeViewer class
which has the abstract LoadTree() method. This defines how the
data typing schema is mapped onto the JTree. We will provide 3
implementations of this method - for P3P 1.0 [1], 1.1 [2] and
OWL [8] versions of the P3P data schema. Once this mapping has
been made, the chosen types are be inserted directly into the
policy without further reference to the schema. New schemas of
the given type can be loaded dynamically.
Future work would include an editor for creating custom data
schemas. Figure 6 shows the datatype editing window with the
P3P base data schema loaded in the left pane and the types
selected in the right pane. Above the schema tree is a button for
loading a new schema tree.

Figure 6. Datatype editing window

3.6 Linking of option handling and human
readable strings to ontologies.
Because of the importance of displaying human readable
translations of attributes in a consistent way [see 9], label strings
for ConstrainedWindow [See Section 3.4.1] implementations are
taken from an XML specification document which may be either
an RDF ontology, or an XML document.
In the case of P3P, the latter is just a translation into XML of the
Human readable translations in the draft P3P 1.1 specification [9].
The checkboxes and their labels are created dynamically from this
document by the getAlternatives method of the Attribute object.
The exact method of associating human readable strings to
checkboxes depends on whether an XML specification document
is used, or an RDF ontology.
1. For an XML specification: each Alternative in the

Attribute's alternative array is an object which can return an
XML fragment from its getXML() method. This is the XML
fragment to be inserted into the statement being edited if the
choice is selected. It may also be derived from a query over
an XML schema in order to minimize programming work in
case of changes to the specification schema.
Each alternative also has a getHumanReadable() method

which performs a query over a human readable equivalences
document in well-defined format, in order to return the
human readable string for that alternative. In our
implementation, the equivalences are stored as fragments of
the document with sibling CDATA text nodes containing the
human readable equivalent.
For example the PURPOSE translations are stored as
follows:
<equivalence>

<node><ours/></node>
<hrstring>Only parties related to this site</hrstring>

<equivalence>
The user's choices are then automatically saved to the
Statement's base document when the user click's OK by
inserting the node associated to the alternative into the
statement.

2. For an OWL ontology (parsed by the Jena [10] API): The
procedure for extracting and displaying the alternatives is

Policy Management for the Web WWW 2005

10 May 2005 75

the same as 1. except that the query extracting the
equivalence will be an RDF query rather than an XPATH
query.

3.7 Use of XSLT transforms for policy views.
The base window of the policy editor shows a set of views of the
policy being edited. These views are produced by XSLT
transforms which define views such as for example Human
readable, statement summary and To Do (a list of incomplete
parts of a policy). Another important view is the legal hints view
(See next section).
The policy views can also be produced using prolog style rules
running over RDF (e.g. using Jena rules). This then outputs a set
of statements inferred from the policy, with a transformation to
natural language. (See also 3.8).

Figure 7. Policy Transformation View (Mirrors view in MS

Internet Explorer Privacy Report)

3.8 Legal hints mechanism
In Europe particularly, regulatory bodies have been concerned
about the possibility of privacy languages which enable policy
authors to write policies which specify data processing practices
which are illegal in the author's jurisdiction.
One important policy view provided by the API is the legal hints
view. This is based on XSLT transformation rules or RDF based
rules which provide users with comments on the policy they have
created based on legal knowledge encoded in the rules. It is
envisaged that XSLT transforms or other inference rules will be
imported based on jurisdiction.
For example if a user creates a P3P policy which says that they
will use email data to contact the user without an opt-out (which
would be illegal in Europe according to [11]), the legal hints can
inform the user that this is an illegal practice in Europe. It is
possible in future versions that these rules could also offer a set of
corrections to the user.

4. Process walkthrough

5. Conclusion
The API described above provides a useful tool for policy
authoring in many scenarios in the field of policies for the web. It
provides an extensible framework for policy-resource association,
statement management and statement composition. It also
provides a framework for providing legal hints and different
policy views.

6. REFERENCES
[1] Platform for Privacy Preferences Specification, Cranor
et al. ,Platform for Privacy Preferences, W3C
Recommendation, http://www.w3.org/tr/p3p
[2] Cranor, Dobbs, Egelman, Hogben et al., The Platform
for Privacy Preferences 1.1 (P3P1.1) Specification W3C
Working Draft 4 January 2005
http://www.w3.org/TR/2005/WD-P3P11-20050104/

Policy Management for the Web WWW 2005

10 May 2005 76

[3] Hogben, G. P3P Using the Semantic Web (OWL
Ontology, RDF Policy and RDQL Rules), W3C Working
Group Note 3 September 2000,
http://www.w3.org/P3P/2004/040920_p3p-sw.html
[4] Powers, C., Schunter, M., Enterprise Privacy
Authorization Language (EPAL 1.2), W3C Member
Submission 10 November 2003,
http://www.w3.org/Submission/EPAL/
 [5] Piero A. Bonatti_ Ernesto Damiani_ Sabrina De Capitani di
Vimercati_ Pierangela Samarati, A Component-based Architecture
for Secure Data Publication_
http://www.acsac.org/2001/papers/114.pdf

[6] Privacy and Identity Management in Europe, European
Research Project, see http://www.prime-project.eu.org

[7] Wilikens, M. et al., PRIME Requirements - Part 3:
Application requirements, http://www.prime-
project.eu.org/public/prime_products/deliverables/pub_del
_D01.1.a.part3_ec_wp03.1_V5_final.pdf
[8] Hogben, G., Describing the P3P base data schema using
OWL, Proceedings of PM4W, WWW2005 workshop.

[9] See Section on User Agent Guidelines, P3P 1.1 Draft
Specification, http://www.w3.org/TR/2005/WD-P3P11-
20050104/#ua
[10] Jena semantic web API, HP Labs, see
http://jena.sourceforge.net
[11] EU Directive 2002/58/EC on Privacy and Electronic
Communications

Policy Management for the Web WWW 2005

10 May 2005 77

http://www.w3.org/P3P/2004/040920_p3p-sw.html
http://www.w3.org/Submission/EPAL/

Policy based access control for an RDF store

Pavan Reddivari
University of Maryland,

Baltimore County
Baltimore MD USA

pavan2@csee.umbc.edu

Tim Finin
University of Maryland,

Baltimore County
Baltimore MD USA

finin@csee.umbc.edu

Anupam Joshi
University of Maryland,

Baltimore County
Baltimore MD USA

joshi@csee.umbc.edu

ABSTRACT

Resource Description Format (RDF) stores have formed an essen-
tial part of many semantic web applications. Current RDF store
systems have primarily focused on efficiently storing and query-
ing large numbers of triples. Little attention has been given to
how triples would be updated and maintained or how access to
store can be controlled. In this paper we describe the motivation
for an RDF store with complete maintenance capabilities and
access control. We propose a policy based access control model
providing control over the various actions possible on an RDF
store. Finally, we discuss on how the Hypertext Transport Proto-
col (HTTP) and its extensions can be used to provide communica-
tion with the store.

General Terms
Management, Experimentation, Security.

Keywords
RDF Store, Access control, Policies, HTTP

1. INTRODUCTION

The Semantic Web is leading us to a world of information shar-
ing, by enabling distributed knowledge aggregation and creation.
Thus many semantic web applications require management of
large amounts of semantic data and there have been ample num-
ber of RDF store implementations, which are capable of storing
large number of RDF triples. We believe that for RDF store to be
more functional and widely deployed in applications they ought
to provide a mechanism to specify restrictions on creation, modi-
fication and browsing of the knowledge. Current implementations
of RDF stores such as Redland and Kowari are mostly focused on
the aspect of scalability and very rarely address the issue of secu-
rity and access control.

In this paper we will map out a set of actions which are re-
quired to completely manage a store, and describe a model of
access control to permit or prohibit these actions. In this model,
agents make requests to perform actions against the RDF store
and the decision whether or not to carry out the requested action
is governed by an explicit policy

Policies are defined by a collection of policy rules governing
whether the action is permitted or prohibited. Examples of ac-
tions include inserting a set of triples into the store, deleting a
triple, and querying whether or not a triple is in the store. The
conditions on a policy rule are a Boolean combination of con-
straints on the agent requesting the action, the type of action re-

quested, the history of previous actions, the contents of the store,
and the possible effect on the store and its model.
Informal examples illustrating the range of policy rules we would
like to support include the following.

• Only agents assigned to an editor role are allowed to insert
or delete triples.

• An agent can only delete triples it previously inserted.

• An agent is only allowed to 'add properties' to classes it in-
troduced.

• No agent may see any values of a ‘social security number’
property.

• No agent may insert a triple that allows any agent to infer a
patient’s ‘HIV status’.

• An agent may modify any data about itself.

• An agent may not add an instance of a foaf:Person without
providing a foaf:name property and either a fof:mbox or
foaf:mbox_sha1sum property.

In the remainder of this paper we describe our preliminary design
for RAP, a simple RDF access policy framework. An initial pro-
totype, implemented using Jena [11], is under construction at the
time of this writing.

2. RDF Graph

In this section we review the RDF model [8,9,10] and identify a
set of primitive actions that can be performed on a RDF graph.
An RDF graph is composed of three types of node, a RDF URI
references node (N), a Blank node (B) and a RDF literal Node
(L). The edges (E) in the graph are directional and each edge also
is associated with a URI [1]. The triple in a RDF graph can be
described as (subject, predicate, object) ∈ (N ∪ B) × E × (N ∪
B ∪ L).

The basic primitive manipulations on this graph can be per-
formed by one of the following ways:

1. Add a triple (subject, predicate, object) to graph such that
both subject and object node did not previously exist in the
graph prior to this addition. This leads to addition of two
new nodes and an edge to the graph.

2. Add a triple (subject, predicate, object) to graph such that ei-
ther subject or object node did not exist in the graph prior to
this addition. This leads addition of one new node and an
edge to the graph.

3. Add a triple (subject, predicate, object) to graph such that
both subject and object node exist in the graph prior to this
addition. This leads addition of an edge to the graph.

Policy Management for the Web WWW 2005

10 May 2005 78

4. Delete a triple (subject, predicate, object) from the graph.
This will lead to the predicate edge being removed from the
graph and the subject and object nodes may be removed or
not, depending on whether they are part of any other triple or
not.

In addition, we will introduce and make use of several compound
actions and indirect actions. Compound actions include the action
of updating or replacing one triple with another, the action of
inserting a set of triples, and the action of deleting a set of triples.
Indirect actions cover the introduction or removal of a triple in the
model through the addition or deletion of separate tripe into the
explicit store.

3. RDF store Actions

We need to identify the set of actions which are needed to main-
tain an RDF store. The access control policies will control per-
mission and prohibition to these actions. Maintaining RDF store
involves four basics actions: Adding, Deleting, Updating and
Searching for triples.

3.1 Additions to the store

These actions allow agents to add new information to the RDF
stores.

• insert(A, T): Agent A directly inserts triple T into the graph.
This action is used by the Agent to add minimal information
into the store, such as ‘foaf:Person is a subclass of
foaf:Mammal.

• insertModel(A, T): Agent A insertModels triple T If Agent
A performed Insert(A, T1) and the inserting of T1 enables
the store to infer that triple T is in the model. This action
leads to indirect addition of knowledge by the user, such as
after adding the triple foaf:Person is a subclass of
foaf:Mammal, addition of triple X Instance of foaf:Person
leads to indirect addition of X rdf:type foaf:Mammal. Con-
straints on this action are useful in preventing an agent from
adding information indirectly.

• insertSet(A, {Tc}): Agent A insertSets a set of triples {Tc}
if Agent A inserts all the triples in {Tc} into the store to-
gether. It is possible that Agent A is not allowed to add the
triples in set {Tc} individually. This action can be used to
ensure that the agent always inserts a set of triples which are
related, for instance an agent may not add an instance of a
foaf:Person without providing a foaf:name property and ei-
ther a fof:mbox or foaf:mbox_sha1sum property .

3.2 Deletions from the store

These actions allow Agents to delete information from the stores

• remove(A, T): Agent A directly removes triple T from the
graph. This Action would be used by the Agent to remove
minimal information from the store, such as ?X
emp:WorksFor of foaf:CompanyX.

• removeModel(A,T): Agent A removeModels triple T If
Agent A performs Remove(A,T1) and the store cannot in-
fer triple T after the removal of T1.

• removeSet(A, {Tc}): Agent A removeSets a set of triples
{Tc} If Agent A removes all the triples in {Tc} into the store
together. It is possible that agent A is not allowed to remove
the triples in set {Tc} individually. This action is useful
when you do not want the agent to remove something unless
it is removing something else too. For instance you might
want to enforce a policy that unless you are deleting the en-
tire employee record, the social security number property
can not be removed.

3.3 Updates to the store

The update action provides a mechanism to update particular
triples in an RDF store. While this could me modeled as a com-
bination of a delete and an insert, it is convenient to have an up-
date that acts as a single transaction.

• update(A, T1, T2): Agent A directly replaces the triple T1
with the T2.

The update action is useful in cases when you want the user to
have the modification rights without the deletion right as in the
case where you want your employees to be able to modify their
cell phone triple but not delete it.

3.4 Querying the store

Two actions are defined to describe an agent’s actions of querying
or searching an RDF store, covering both direct and indirect ac-
cess.

• see(A, T): Agent A sees triple T if it returned in the response
to one of A's queries to the store. This action will allow users
to browse the knowledge in the store.

• use(A, T): Agent A uses triple T if it is used by the store in
answering one of A's queries. This action is useful when you
want the user to be able to restrict what information is being
used to answer agent A’s query.

Both these actions are independent of each other, even though it
might appear that if Agent A can ‘see’ triple T, then Agent A can
‘use’ triple T but that is not the case. For example consider three
triples T1, T2 and T3. Let us assume that you can infer T3 only
by using T1 and T2. If Agent A can see T1 but cannot use it and
can use T2 but cannot see it, then Agent A will not be able to see
T3.

4. RDF Store Structure

An RDF store typically contains domain specific RDF schema
and RDF data. In the RAP framework, the RDF store is also used
to store the policy, represented in RDF, as well as other data and
meta-data needed for the policy rules.

The agents are also represented in RDF and are parts of the
domain specific knowledge. This representation of agents is used
in the policy specifications. The RDF store will also maintain
metadata about the triples in the store, like the creator of the triple

Policy Management for the Web WWW 2005

10 May 2005 79

Figure 1: RDF Store

5. Policies

In the RAP framework, a policy is defined by a set of policy rules
that together specify if an agent’s specific requested action is
permitted or prohibited. Following Rei [3,4], a query about the
status of an agent’s specific action request might have any of four
outcomes: unknown, proven to be permitted, proven to be forbid-
den, and proven to be both permitted and forbidden.

Like Rei, RAP allows a policy to include meta-rules that can
be used to resolve the two problematic cases. The two kinds of
meta-rules that RAP allows are a default policy and a modality
preference. Together, these can be thought of as implicit policy
constraints.

The default policy, if specified, determines what happens in

the upper left quadrant of the decision matrix shown in Figure 2.
If default(permitted) is true then any actions not explicitly prohib-
ited are permitted. If default(prohibited) is true, than actions not
expressly permitted are prohibited. One of these two default set-
tings must be selected (typically default(prohibited)).

The modality preference specifies what to do when we are in
the lower right quadrant of the decision matrix. If pre-
fer(permitted) is true, then an action that can be proven to be both
permitted and prohibited is considered to be permitted. If pre-
fer(prohibited) is true, then prohibitions dominate permissions.
One of these two settings must be selected, typically the latter.

Explicit policy rules are used to permit or prohibit an agent
from performing a class of actions on the RDF store. The general
form of a policy rule is “Modality(Action(A,T)) :- Condition“
where Modality is one of permit or prohibit, Action names an
action, A identifies an agent and T identifies a triple. Condition is
a Boolean combination of simple constraints expressed as RDF
triples. The Triple (T) represented in the head of the policy has

the form (subject, predicate, object). Wild card character “?” can
be used in the triple pattern, a triple of the form (?, ?, ?) would
thus hold true for all the triples.

The Specification of the agent is defined by the agent repre-
sentation in the domain knowledge. This allows us to specify
policies using agent specific data.

The Condition for the policy can be specified either using the
metadata about the triples, the triple data itself, the Agent data or
by combing both Agent and triple data. Conditions can be com-
bined using Boolean AND (&), OR (|) operations.
Metadata specific conditions. The conditions in the policy can
be specified based on the metadata about the triples that the store
maintains. The kind of metadata to be collected is specific to the
store implementation.

permit(insert(A,(?,rdfs:type,C))) :- createdNode(A,C)
The above policy will allow Agents to create instances of

classes only if they had created those classes. The createdNode
(A, C) returns true if Agent A had created triple T which created
node C.
Triple specific conditions. The policies can also be specific to
the kind of triples being added.

prohibit(see(A,(?,emp:salary,?))
prohibit(see(A,(?,P,?))) :- rdfs:subProperty(P,emp:salary)

These policies will prohibit agents from seeing the value of the
emp:salary property, its sub properties or any equivalent property.
The rdfs:subProperty(P,emp:salary) returns True if predicate P is
defined to be an rdfs:subProperty of emp:salary.
Agent specific conditions. The attributes of the Agent could also
be used in the conditions of policy. The Agent’s representation
would be specific to the domain

permit(see(A,(?,emp:salary,?)):-
 existTriple(A,rdfs:type,emp:Auditor)

This policy will permit an Agent A to see anyone’s salary as long
as the Agent A is an auditor.
Agent and Triple specific conditions. The conditions in the pol-
icy could be tied to both the Agent attributes and the triple data
being acted upon.

permit(update(A,(P,emp:salary,?),(P,emp:salary,?)) :-
 existTriple(A,emp:Supervisor,P)

This policy will permit an Agent A to update salary of P as long
as A is the supervisor of P.

Custom Predicates. There are certain custom predicates which
might be helpful in writing access policies. Some of them have
already been discussed such as createdNode(A,C), rdfs:subProp-
erty(P,emp:salary). Another important predicate is schemaPredi-
cate(P) which would return true if P is a predicate used to define
RDF schema level information (e.g., rdfs:subClass, rdfs:domain,
etc).

prohibit((insert(A,(?,P,?))) :- schemaPredicate(P).
This policy will prevent Agent A form changing the schema of
the RDF store.

Delegation. As the Policies are represented in RDF and are
stored in RDF store, delegation of policies can be achieved by
creating Meta-polices, which are policies governing the policy
triples in the store.

? permitted

prohibited conflict

proven
permitted

proven
prohibited

no

no

yes

yes

? permitted

prohibited conflict

proven
permitted

proven
prohibited

no

no

yes

yes

Figure 2. In reasoning about an ac-
tion, four outcomes are possible. An
uncertain or conflicted outcome may
be resolved my meta-policy rules

RDF Store

Domain Specific Schema
and Instance

Policies

Policy Management for the Web WWW 2005

10 May 2005 80

6. Architecture

We believe that the clients should be able to access the RDF store
like any other website on Web. To enable this we propose the use
of HTTP methods to access the RDF store.

Figure 3: Proposed Architecture

HTTP seemed the optimal choice because of its synergy with
current web and its wide acceptance.

We use the different HTTP Methods to access and modify
the RDF store, the body of these methods would contain the XML
serialized RDF.

The PUT Method is used for inserting the triples. All the tri-
ples that are to be inserted are sent in the body of the method. The
store treats all these triples as one set and if that is prohibited, it
then inserts each triple individually. All those triples which were
prohibited from inserting are returned in the response message.

The Delete Method is used for removing the triples. The
POST method would be used to query the store, the body of the
POST method will contain the SPARQL query.

7. Status and conclusions

We have described a policy based framework to provide access
and update control for an RDF store. Access and modifications
are governed by a policy expressed as a collection of policy rules.
Each rule defines a constraint on a class of actions that can de-
pend on the actor and the content of the triples involved. The
framework is currently being implemented using Jena [11].

8. REFERENCES

[1] Daniel Weitzner, Jim Hendler, Tim Berners-Lee, and
Dan Connolly, Creating a policy-aware web: Discre-
tionary, rule-based access for the World Wide Web. In
Elena Ferrari and Bhavani Thuraisingham, editors,
Web and Information Security,.

[2] Berners-Lee, T., Hendler, J., and Lassila, O. The Se-
mantic Web, Scientific American, May, 2001.

[3] Kagal, L., Paoucci, M., Srinivasan, N., Denker, G.,
Finin, T., and Sycara, K. (2004). Authorization and
Privacy for Semantic Web Services, IEEE Intelligent
Systems (Special Issue on Semantic Web Services),
July, 2004.

[4] Lalana Kagal (2004). A Policy-Based Approach to
Governing Autonomous Behavior in Distributed Envi-
ronments", Phd Thesis, Department of Computer Sci-
ence and Electrical Engineering, University of Mary-
land Baltimore County, September 2004.

[5] J.M. Bradshaw, et al., (2003). Representation and Rea-
soning for DAML-Based Policy and Domain Services
in KAoS and Nomads, Proceedings of the Conference
on Autonomous Agents and Multiagent Systems,
ACM Press, 2003.

[6] Claudio Gutierrez, Carlos Hurtado, and Alberto Men-
delzon. Formal aspects of querying RDF databases,
First VLDB Workshop on Semantic Web and Data-
bases, Berlin, Germany, September 7-8, 2003

[7] Berners-Lee, T., Fielding, R. and Frystyk, H. (1996).
“Hypertext Transfer Protocol” HTTP/1.0,” HTTP
Working Group, Feb. 1996.

[8] Ora Lassila and Ralph Swick, Working draft, W3C,
1998. Resource description framework (RDF) model
and syntax specification, Edit.

[9] Patrick Hayes, editor (2003). RDF Semantics, W3C
Working Draft, 23 January 2003.

[10] Dan Brickley, R.V. Guha. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema, W3C Working Draft
23 January 2003, Edit.

[11] McBride, B., Jena: a semantic Web toolkit, IEEE
Internet Computing, v6n6, pp. 55-59, November 2002.

Data/Policies
Access Protocol
(HTTP)

Policy
Engine RDF client RDF

Store

Policy Management for the Web WWW 2005

10 May 2005 81

	allbut04.pdf
	05.masuoka10.pdf
	1. Introduction
	2. Motivation and Design Goals
	3. Implementation and Test Deployment
	4. Evaluation and Discussions
	5. Related work
	6. Conclusion
	7. REFERENCES

	06.hogben16.pdf
	Introduction
	Use cases
	Requirements on a privacy and Identity Management data sche
	Existing data schemas in relation to requirements
	P3P1.0 base data schema
	The P3P 1.1 Data Schema
	The RDFS Schema for P3P

	Modelling Class Relationships in OWL
	Reasoning use cases
	Modelling the entailments using the structure of the P3P 1.0
	OWL semantics

	Concrete and abstract types
	Shortcut classes
	Referencing the schema from privacy policies
	Inferencing over the schema
	Deriving types of data collected or requested from broad typ

	Validation using the OWL format
	Synactic validation
	Semantic validation

	Changes to the P3P data schema vocabulary
	Conclusion
	REFERENCES

	11hogben15.pdf
	INTRODUCTION
	Editor usage scenarios
	P3P 1.0 Policies
	P3P 1.1 Policies
	Semantic web P3P style policies
	Enterprise access control (XACML style) policies

	Policy editing interface API Components
	Common features
	Resource-policy binding
	Statement handler
	Statement wizard
	Data typing schemes
	Linking of option handling and human readable strings to ont
	Use of XSLT transforms for policy views.
	Legal hints mechanism

	�
	Process walkthrough
	Conclusion
	REFERENCES

	04.WSPolicyInOWL.pdf
	Introduction
	Mappings
	2.3. Policy processing
	One of our arguments for expressing policies using OWL was t
	Other Policy Languages
	Conclusion
	ACKNOWLEDGEMENTS
	REFERENCES

	04.WSPolicyInOWL.pdf
	Introduction
	Mappings
	2.3. Policy processing
	One of our arguments for expressing policies using OWL was t
	Other Policy Languages
	Conclusion
	ACKNOWLEDGEMENTS
	REFERENCES

	04.WSPolicyInOWL.pdf
	Introduction
	Mappings
	2.3. Policy processing
	One of our arguments for expressing policies using OWL was t
	Other Policy Languages
	Conclusion
	ACKNOWLEDGEMENTS
	REFERENCES

	06.hogben16.pdf
	Introduction
	Use cases
	Requirements on a privacy and Identity Management data sche
	Existing data schemas in relation to requirements
	P3P1.0 base data schema
	The P3P 1.1 Data Schema
	The RDFS Schema for P3P

	Modelling Class Relationships in OWL
	Reasoning use cases
	Modelling the entailments using the structure of the P3P 1.0
	OWL semantics

	Concrete and abstract types
	Shortcut classes
	Referencing the schema from privacy policies
	Inferencing over the schema
	Deriving types of data collected or requested from broad typ

	Validation using the OWL format
	Synactic validation
	Semantic validation

	Changes to the P3P data schema vocabulary
	Conclusion
	REFERENCES

