
Policy Conflict Analysis Using Free Variable Tableaux
for Access Control in Web Services Environments

Hiroaki Kamoda
NTT DATA CORPORATION

Tokyo, Japan

kamodah@nttdata.co.jp

Masaki Yamaoka
NTT DATA CORPORATION

Tokyo, Japan

yamaokam@nttdata.co.jp

Shigeyuki Matsuda
NTT DATA CORPORATION

Tokyo, Japan

matsudasg@nttdata.co.jp

Krysia Broda
Imperial College London, UK

k.broda@imperial.ac.uk

Morris Sloman
Imperial College London, UK

m.sloman@imperial.ac.uk

ABSTRACT

Web Services technologies are now an active research area. By in-

tegrating individual existing web systems the technology enables

the provision of advanced and sophisticated services, such as al-

lowing users to use different types of resources and services simul-

taneously in a simple procedure. However the management and

maintenance of a large number of Web Services is not easy and,

in particular, needs appropriate authorization policies to be defined

so as to realize reliable and secure Web Services. The required au-

thorization policies can be quite complex, resulting in unintended

conflicts, which could result in information leaks or prevent access

to information needed. This paper proposes an approach using free

variable tableaux for detecting conflicts resulting from the combi-

nation of various kinds of authorization and constraint policies used

in Web Services environments. The method not only enables static

detection of policy conflicts such as modality and static constraint

conflicts but also yields information that is helpful for correcting

the policies.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—

Formal methods, Validation; D.4.6 [Operating Systems]: Security

and Protection—Access controls, Verification

General Terms

Algorithms, Theory, Verification

Keywords

Access Control, Policy Analysis, Conflict Detection, Free Variable

Tableaux, Abduction

1. INTRODUCTION
The recent spread of broadband technology such as DSL and

FTTH has led to a rapid increase in the number of Internet users

across the world. One of the key technologies is the use of Web

systems, often based on the use of HTTP, and although having

been in use for many years, it is still one of the most used tech-

nologies. In particular, ways of integrating individual web sys-

tems to provide advanced services have been suggested (e.g. [21,

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

27]). Web Services are constructed by statically or dynamically

integrating independent web systems using a set of XML stan-

dards such as SOAP[26], Universal Description, Discovery and

Integration (UDDI)[24] and Web Services Description Language

(WSDL)[25]. This enables advanced and sophisticated services to

be provided enabling users to perform several procedures simulta-

neously, resulting in a better overall service.

In order to realize reliable and secure Web Services it is impor-

tant to authenticate and authorize the users appropriately. For in-

stance, to prevent problems such as an information leak, suitable

access control is needed for the users who access the resources

through Web Services. By using the standard policy description

languages such as WS-Policy[5], WSPL[1] and XACML[17], it is

possible to realize complicated access control for Web Services.

However, the overall structure of these policies can become very

complex, reflecting the complexity of the web services and roles

involved. There is an increased risk that an administrator mistak-

enly defines conflicting policies which, if the wrong choice is made,

result in information leak or prevent access to critical information

in an emergency situation.

We have already proposed a static method for detecting policy

conflicts arising in the On Demand VPN Framework[14]. The

method is based on free variable tableaux and has the advantage

that it gives helpful information for resolving conflicts. In this pa-

per we extend the method beyond simple authorization policies to

cope with various kinds of constraints on policies.

The paper is organized as follows: Section 2 introduces the Web

Services model for policy analysis, Section 3 presents an outline

of conflict detection using free variable tableaux and in Section 4

we illustrate the method to detect and abduce conflicting policies

through examples. In Section 5 we describe some related work,

and our conclusions and future work are presented in Section 6.

2. WEB SERVICES MODEL AND POLICY
There are many types of use case models for Web Services[11]

and in this paper, we assume the “aggregation Web Services model”,

in which a single server manages several Web Services accessed by

multiple users. This model is mainly used for services such as por-

tal site, market place and one stop services. The features of the

model and policies used in it are described in this section. The

particular Web Services model used in this paper is shown in Fig.1.

2.1 Web Services Model
The main entities of the Web Services model used here are re-



��������� ��	�
���	����
�� ���������
������
����������
����������

Figure 1: Aggregation Web Services Model������� !"#$��%�&'�(��)�&#*+ ��,��!�-*./0 ��1��!�-*./00��2�3.'"4*/0 �56�7��++!7��$#+!7�5)�8'8$#+!7�52�$#+!7�5%�$'-!*�5��9#� !$*(!�
:;<=>?@ABCDEFA=CG>BC>GA :?<H;GIACDEFA=CG>BC>GA�5,��7 !'"$'-!* �51�7��++!7��$'-!*��J�3.'"4*/00

Figure 2: Examples of Role Structures

quester, management server, Web Services and their resources. A

management server integrates several Web Services and provides a

common services interface for users. A requester sends a request

to the management server to use the resources or services provided

by the Web Services. A management server checks the request by

using the access control policy to see whether it should be granted

or not. If it is granted, then the request is transferred to appropriate

Web Services to answer the request. The most popular use case

of this model is travel agency service example[11]. By using the

management server, there is an advantage that requesters can use

any Web Services in a similar way.

We assume the authorization policies needed for checking the

request are defined in terms of subject and target role structures[4,

18]. Policies can propagate up or down the role structures. Further-

more, an authorization policy may be defined in terms of composite

actions, which can result in conflicts if separate policies are defined

for the various sub-actions. We also assume that we can define obli-

gation policy and kinds of constraint policy, including the Chinese

wall policy, separation of duty policy and time constraint policies.

These policies are all explained below.

2.2 Features of the Policy
In this section policies that can be defined in the management

server are presented.

2.2.1 Roles

Policies are defined by using a role, which is a named collec-

tion of privileges[9]. A partial order relation is defined among

these roles and the graph representation of the relation is called a

role structure. Individual requesters and resources take on assigned

roles. In particular, the role structure corresponding to requesters is

called a subject role structure (SRS) and that corresponding to re-

sources or services of Web Services is called a target role structure

(TRS). Examples of these role structures are shown in Fig.2.

2.2.2 Authorization Policy

The most basic policy defined in the management server is an

authorization policy. There are both positive and negative autho-

rization policies. Examples are:

Policy r1 : Auth+(Bronze I, movie, play)
Policy r2 : Auth−(Gold, movie, play)

These policies define authorizations between a requester and Web

Services that provide multimedia contents. Policy r1 specifies that

the subject role Bronze I is allowed to perform the action play

on the target role movie and Policy r2 specifies that the subject

role Gold is forbidden to perform the action play on the target

role movie. The policies r1 and r2, appear to define authorizations

for different subject roles so there should be no problems. However,

if these policies are compared with respect to the role structure,

then a conflict occurs, which is explained in the next section.

2.2.3 Propagation Policy

The role structures potentially simplify policy specification by

allowing propagation policies. In general, if a certain subject role

r is allowed to perform a particular action, then roles higher than r
should also be allowed to perform the action. Conversely, if roles

higher than r are not permitted to perform an action, then r should

not be permitted to perform the action. These propagation policies

are specified as follows:

Policy r3 : prop(Auth+,R ∈ SRS, Up)
Policy r4 : prop(Auth−,R ∈ SRS, Down)

Policy r3 specifies that Auth+ policy defined for subject role struc-

ture R propagates upwards through roles. Policy r4 specifies that

Auth- policy defined for subject role structure R propagates down-

ward through roles. More concretely, let the role structure shown

in Fig.2(a) be R, then Policies r3 and r4 implicitly define the fol-

lowing policies from Policies r1 and r2.

r1 1 : Auth+(Silver I, movie, play)
r1 2 : Auth+(Gold, movie, play)
r1 3 : Auth+(Platinum, movie, play)
r2 1 : Auth−(Silver I, movie, play)
r2 2 : Auth−(Silver II, movie, play)
r2 3 : Auth−(Bronze I, movie, play)
r2 4 : Auth−(Bronze II, movie, play)
r2 5 : Auth−(Guest, movie, play)

Clearly, Policy r1 2 and Policy 2 3 derived from propagation poli-

cies r3 and r4 respectively conflict with Policy r2 and Policy r1,

since the subject roles named Bronze I and Gold have opposite

permissions. Policy r1 1 and Policy r2 1 also conflict.

Propagation is a convenient and easy way to specify implicit

policies, but it can result in unforeseen conflicts. Note that the con-

cept of the role structure described here is slightly different from

the role hierarchies defined in the standard role based access control

model[9] in that the propagation is explicitly defined by a propaga-

tion policy, rather than being implicit. The direction of the propa-

gation may differ according to the type of policy or the type of role

structures. For example, the system administrator may define the

subject role structure “upside down” in some situations. For exam-

ple, in Fig.2 the administrator may define the Guest user as a top

and Platinum user as a bottom role, in which case polices should

propagate in the opposite directions to those given in Policies r3

and r4. That is, Policy r3 would specify Down and Policy r4 would

specify Up. There also may be a case that only lower role users are

permitted to do something. For example we can imagine the situ-

ation in which the rank of member status is decided by how many

points the member has purchased. In this case members with a role

lower than Gold should be permitted to access the service to pur-

chase the points and a positive authorization would be expected to

propagate down. We can thus define an explicit propagation pol-

icy for each role structure which is more flexible than the implicit

propagation in standard role hierarchies.



2.2.4 Action Composition Policy

Policies may be defined in terms of more than one action. For

example, consider a reservation system, for which the Web Ser-

vices may provide different types of reservation services. Example

policies are:

Policy r5 : Auth+(Bronze II, TR, rsv travel)
Policy r6 : Auth−(Bronze II, TR, rsv air)
Policy r7 : Auth−(Bronze II, TR, rsv hotel)

rsv travel, rsv air and rsv hotel mean, respectively, to

send a request for some holiday abroad, to reserve an airline ticket

and to reserve a hotel, and TR indicates a certain Web Service that

provides travel reservation services. At first sight, comparing the

three policies r5, r6 and r7, no problems are detected. However,

rsv travel is, in fact, a composite action, defined as the follow-

ing action composition policy:

Policy r8 : rsv travel = rsv air ∧ rsv hotel

This specifies that two actions rsv air and rsv hotel are needed

to complete the request rsv travel. This means that to per-

form an overseas holiday reservation process the requester must be

granted to reserve both an airline ticket and hotel accommodation

through the Web Services. Then r5, r6 and r7 become conflicting

policies, as policy r5 specifies that Bronze II is allowed to per-

form an rsv travel action, while the other two policies specify

that both the actions rsv air and rsv hotel are prohibited. In

this way an action composition may also lead to policy conflicts.

2.2.5 Obligation Policy

In addition to the authorization policy described in Section 2.2.2,

an obligation policy[8] can be defined. Example policies are:

Policy r9 : Obli+(Play, Guest, fillout, questionnaire)
Policy r10 : Obli−(Sunday, Guest, login, WS)

Policy r9 specifies that Guest member must fill out the question-

naire after playing the multimedia contents. Policy r10 specifies

that Guest member must not login to the Web Services named WS

on Sunday.

2.2.6 Chinese Wall and Separation of Duty Policy

A Chinese wall policy[6] and separation of duty policy[7] de-

fines the constraints for target roles and actions respectively. Note

that the original use for the separation of duty policy was to pre-

vent an occurrence of fraud; however, in this paper separation of

duty simply means a constraint for any actions. Here we consider

examples such as online banking and auction Web Services, for

which example policies are:

Policy r11 : CW(Guest, {Bank A, Bank B}, view account)
Policy r12 : SoD(Bronze I, Auction, {sell, buy})

Policy r11 specifies that subject role named Guest is permitted to

view accounts of exactly one of the target roles Bank A or Bank B.

Policy r12 specifies that subject role named Bronze I of auction

Web Services is permitted to either sell or to buy something through

the Web Services, but not both buy and sell simultaneously.

These constraint policies may also lead to other types of pol-

icy conflict. For example, the following two positive authorization

policies r13 and r14 conflict with Policy r11.

Policy r13 : Auth+(Guest, Bank A, view account)
Policy r14 : Auth+(Guest, Bank B, view account)

The conflict arises because these policies allow the subject role

named Guest to view accounts of both target roles named Bank A

and Bank B. A similar situation can be happen when defining a

separation of duty policy.

2.2.7 Time Constraint Policy

A time constraint policy can be used to specify the period during

which an authorization policy is valid. This constraint is defined

in each authorization policy. Here is a multimedia Web Services

example:

Policy r15 : Auth+(Gold, movie, play, [00 :00, 24 :00])
Policy r16 : Auth−(Guest, music, play, [09 :00, 17 :00])

Policy r15 specifies that subject role named Gold can play a movie

for 24 hours (i.e. at any time). Policy r16 specifies that subject

role named Guest cannot play music between 9:00 to 17:00. A

time constraint policy itself doesn’t cause a policy conflict. Policy

conflicts can happen only if the time periods specified in various

policies overlap. An example is given in subsection 4.3.3.

2.3 Policy Conflict
As described in Section 2.2, conflicting policies can result from

propagation, action composition and other constraint policies, which

cannot be detected by simply comparing authorization policies. We

call this type of conflict implicit conflict. The problem is that as role

structures and the action compositions become more complex, so it

becomes more difficult to detect an implicit conflict. In some ap-

plications runtime conflict detection methods are not suitable. For

example, the information exchanged in medical applications usu-

ally contains very sensitive data. Information leak caused by an

incorrect policy should never be allowed and contrarily in a med-

ical emergency prevention of access to information resulting from

an undetected conflict could have life-threatening consequences.

Therefore we need a method that can analyze policies statically

before activating a system, in order to detect presence of conflicts,

and to provide information to resolve any conflicts detected. In the

rest of this paper we present our approach, which is based on free

variable tableaux, to satisfy these demands.

3. FREE VARIABLE TABLEAUX
In this section we describe an outline of the conflict detection

method based on free variable tableaux[10].

It is possible to enumerate all policies derived implicitly by prop-

agation and action composition policies and then to detect an im-

plicit conflict by comparing the original and derived policies. How-

ever, this would be computationally expensive and it is still hard to

identify the original policies that cause any conflict. The Free Vari-

able Tableaux method allows faster detection of a conflict and also

infers the cause of the conflict.

Detection of a conflict effectively requires that a contradiction

⊥ be derived from a collection of policies P . To prove that C
results from Γ (i.e. Γ |= C) is equivalent to showing that the set

{Γ, ¬C} is inconsistent (i.e. {Γ,¬C} |=⊥). The method of free

variable tableaux (FVT) can be used to show inconsistency. The

FVT method is a sound and complete theorem prover upon which

can be built simple abductive reasoning. Moreover, it has optimized

implementations. The following two steps are needed to detect a

conflict using FVT:

i) each policy is translated into a logical sentence

ii) the FVT method is applied to these sentences to detect any

possible conflicts, by detecting inconsistency, and to obtain

the information that shows the cause of the conflict.



In other words, all we have to do is to define the following trans-

lation mapping ζ from policies to logical sentences, such that con-

flicting policies become inconsistent sentences in logic.

ζ : P → L

∈ ∈

r 7→ ζ(r)

where P is a set of policies and L is a set of sentences. Once poli-

cies have been translated into logic, a conflicting policy is detected

in the same way independent of the language to define the policies,

so our approach can easily be applied to various different policy

definition languages.

4. FORMALIZATION OF POLICIES
In this section the definition of ζ for some policies is presented.

4.1 Authorization and Obligation Policy
The two most basic policies are an authorization policy and an

obligation policy. We first present these policy definitions and their

formalizations.

4.1.1 Authorization Policy

An authorization policy (Auth+) defines the action A1 that a

subject role S1 is permitted to perform on a target role T1. A nega-

tive authorization policy (Auth-) defines the action A1 that a sub-

ject role S1 is forbidden to perform on a target role T1. These are

represented by

Auth±(S1, T1, A1).

4.1.2 Obligation Policy

An obligation policy (Obli+) defines the action A1 that a sub-

ject role S1 must perform on a target role T1 when an event E1

occurs. A negative obligation policy (Obli-) defines the action

A1 that a subject role S1 must not perform on a target role T1 when

an event E1 occurs. These are represented by

Obli±(E1, S1, T1, A1).

4.1.3 Formalization

The translation mapping ζ of authorization policies and obliga-

tion policies is defined as follows.

ζ(Auth+(S1, T1, A1)) :=∀x(Ex → P (S1, T1, A1))
ζ(Auth−(S1, T1, A1)) :=∀x(Ex → ¬P (S1, T1, A1))

ζ(Obli+(E1, S1, T1, A1)):=E1 → O(S1, T1, A1)
ζ(Obli−(E1, S1, T1, A1)):=E1 → R(S1, T1, A1)

In the above translations, the predicate P can be read as “subject

role S1 is permitted to carry out action A1 on target role T1” and

predicate O as “subject role S1 must carry out action A1 on target

role T1” and R as “subject role S1 must not carry out action A1 on

target role T1”. The atom Ex says that event x occurs. Then, for

example, the second and third translations can be read, respectively,

as “for any event Ex, S1 is forbidden to carry out A1 on T1” and

“if event E1 occurs then S1 must carry out action A1 on target role

T1”.

Finally, there needs to be two axioms that relate P , O and R i.e.

an obligation policy requires an authorization policy to permit the

action and it contradicts a negative obligation policy:

Ax1 : ∀s, t, a(O(s, t, a) → P (s, t, a))
Ax2 : ∀s, t, a(¬(O(s, t, a) ∧ R(s, t, a)))

Ax1 is used to detect conflicts involving both authorization and

obligation policies and Ax2 is used to detect conflicts between pos-

itive and negative obligation policies.

4.2 Propagation and Action Composition Pol­
icy

4.2.1 Propagation Policy

As shown in Section 2.2.3, an authorization policy is defined by

using a role that has a partial order relation and a propagation policy

defines how an authorization policy propagates in accordance with

the partial order. The syntax of the propagation policy is as follows.

prop(Auth+|−, SRS|TRS, Up|Down)

SRS and TRS stand, respectively, for the subject and target role

structures to which the propagation policy is applied. Up and Down

define the direction of the propagation, where Up means that the

policy propagates upward through the partial order from the least

element, and Down means that the policy propagates downward

from the greatest element.

The syntax of the propagation policy allows the following eight

types of propagation policies to be defined.

prop1 : prop(Auth+,R ∈ SRS, UP)
prop2 : prop(Auth−,R ∈ SRS, Down)
prop3 : prop(Auth+,R ∈ SRS, Down)
prop4 : prop(Auth−,R ∈ SRS, UP)
prop5 : prop(Auth+,R ∈ TRS, UP)
prop6 : prop(Auth−,R ∈ TRS, Down)
prop7 : prop(Auth+,R ∈ TRS, Down)
prop8 : prop(Auth−,R ∈ TRS, UP)

More than one propagation policy or no propagation policy can be

defined as required. These eight propagation policies are translated

into the following four sentences.

ζ(prop1) = ζ(prop2) :=
∀x, y, z, a(P (x, y, a) ∧ HR(z, x) → P (z, y, a))

ζ(prop3) = ζ(prop4) :=
∀x, y, z, a(P (x, y, a) ∧ HR(x, z) → P (z, y, a))

ζ(prop5) = ζ(prop6) :=
∀x, y, z, a(P (x, y, a) ∧ HR(y, z) → P (x, z, a))

ζ(prop7) = ζ(prop8) :=
∀x, y, z, a(P (x, y, a) ∧ HR(z, y) → P (x, z, a))

where HR(i, j) is a predicate stating that i ∈ R is a “senior” role

of j ∈ R (i.e. i is greater than j in the partial order of R). If you

use the fact that (A ∧ B) → C is equivalent to (¬C ∧ B) → ¬A,

you can easily prove that, for example, prop1 and prop2 policies are

translated into the same sentence and similarly for the other cases

shown above.

4.2.2 Action Composition Policy

An action composition policy is a policy that defines the rela-

tionship among actions operated in Web Services. The syntax of

the action composition policy is defined by n actions A1, · · · , An,

A1 = Γ(A2, · · · , An)

where Γ is a Boolean combination of A2, · · · , An. The mapping ζ
for the action composition policy is defined as follows.

ζ(A1 = Γ(A2, · · · , An))
:= ∀x, y(P (x, y, A1)↔Γ(P (x, y,A2), · · · , P (x, y,An)))



4.3 Other Constraint Policies
In this section we present a definition of the mapping ζ for a

Chinese wall[6], separation of duty[7] and time constraint policy

as examples of other constraint policies. There are two types of

separation of duty - static and dynamic [22], however, we discuss

only static separation of duty and its conflicts in this paper.

4.3.1 Chinese Wall Policy

We specify the syntax of a Chinese wall policy for a set of targets

{T1, T2}.

cw1 : CW(all, {T1, T2}, all)

This Policy cw1 defines two mutually exclusive target roles. Namely,

all subject roles can perform all actions for exactly one of the two

targets {T1, T2}. The mapping ζ of this Chinese wall policy is de-

fined as follows.

ζ(cw1) := ∀x, y¬(P (x, T1, y) ∧ P (x, T2, y))

If a Chinese wall policy must be defined for specific subject role

or action in place of arbitrary ones, one can replace the arbitrary

values x or y in the above formalization by a specific subject role

or action such as S1 or A1.

4.3.2 Separation of Duty Policy

We specify the syntax of a separation of duty policy for a set of

actions {A1, A2}.

sod1 : SoD(all, all, {A1, A2})

This Policy sod1 specifies that two actions are mutually exclu-

sive i.e., all subject roles can perform exactly one of the actions

{A1, A2} for all target roles. The mapping ζ of this separation of

duty is defined as follows.

ζ(sod1) := ∀x, y(¬(P (x, y, A1) ∧ P (x, y,A2)))

If a separation of duty policy must be defined for a specific subject

or target role then replace the arbitrary values x or y in the above

formalization by a specific subject or target role.

Note that more complex variations of the Chinese wall and sep-

aration of duty policies can be easily formalized. For example, a

separation of duty for any finite set of mutually exclusive actions

can be formalized by including additional predicates of the form

P (x, y,Ai) in Policy sod1. However, in this paper, we restrict the

discussion to two mutually exclusive actions for simplicity.

4.3.3 Time Constraint Policy

A time constraint policy defines the time or period during which

a policy becomes valid. In general a temporal logic may be best

suited formalize the time constraint policy. However in this paper,

by keeping to a simple time constraint policy, we present a formal-

ization using first order logic.

Let I1, I2, · · · , In be a set of points that is defined on a time

axis T , where I1 < I2 < · · · < In. A time constraint for an

authorization policy is specified as follows by a period [Ia, Ib], a ≤
b.

Auth±(S1, T1, A1, [Ia, Ib])

An Auth+ policy specifies that during the time period [Ia, Ib] the

subject role S1 is permitted to perform the action A1 on target role

T1. An Auth- policy specifies that during the time period [Ia, Ib] a

subject role S1 is forbidden to perform the action A1 on target role

T1. The translation mapping ζ for these time constraint policies is

defined as follows.

ζ(Auth+(S1, T1, A1, [Ia, Ib]))
:= ∀t(T (t, Ia, Ib) → P (S1, T1, A1, t)), (Ia ≤ Ib)

ζ(Auth−(S1, T1, A1, [Ia, Ib]))
:= ∀t(T (t, Ia, Ib) → ¬P (S1, T1, A1, t)), (Ia ≤ Ib)

where the predicate T (t, Ia, Ib) can be read as a time t is contained

in the time period [Ia, Ib] and P (S1, T1, A1, t) can be read as sub-

ject role S1 is allowed to perform an action A1 on target role T1 at

time t. A positive authorization policy and negative authorization

policy that are defined with a time constraint may lead to a conflict

if their time periods overlap. To detect this type of conflict there

needs to be two additional axioms.

Ax3 : ¬∃x, y(T (t, Ix, Ix+1) ∧ T (t, Iy, Iy+1) ∧ x 6= y))
Ax4 : ∀x < ∀y(T (t, Ix, Iy) ↔

Wy−1

k=x
T (t, Ik, Ik+1))

Ax3 defines that at most one unit time period is always valid. Ax4

defines that T (t, Ix, Iy) can be divided into a set union of unit time

periods T (t, Ix, Ix+1) ∨ T (t, Ix+1, Ix+2) ∨ · · · ∨ T (t, Iy−1, Iy).

5. CONFLICT DETECTION
In this section we show that our approach can detect a conflict

and abduce the cause by using some examples.

5.1 Modality Conflict
Lupu et al. [16] mentioned that the following combinations of

authorization and obligation policies may cause a modality conflict.

{Auth+/Auth−}, {Obli+/Obli−}, {Obli+/Auth−}

By using the mapping ζ defined in Section 4.1.3 and the tableaux

method, every combination of modality conflict can be detected.

As an example, in Fig.3 we show the result of analyzing the pair

Obli+/Auth-and in particular that the following policies conflict.

Policy r17 : Obli+(E1, S1, T1, A1)
Policy r18 : Auth−(S1, T1, A1)

In the FVT, if inconsistent sentences can be made to appear in

the same path, then the path is closed (indicated by a horizontal

line in Fig.3). If all paths are closed, then the given sentences are

conflicting.

A tableaux is developed as a tree, such that every piece of data is

analyzed in every branch of the tree, unless a branch should already

become conflicting. The analysis starts from the premise that the

data are not conflicting and derives a contradiction, namely that all

possibilities resulting from the assumption lead to contradiction. A

datum is analyzed by considering the possible truth values of its

constituents. For example, a sentence of the form A → B is true

either if ¬A is true or if B is true. This leads to two possibilities,

represented in the tableaux by two branches. Basic rules to build

a tableaux are presented in Table 1. A sentence ∀x(Ex → B)
is true for each instance of the variable x. In the FVT method, a

free variable is substituted for x, say x1, to give the free variable

instance Ex1
→ B, which is analyzed as above. That is, it is true

either if ¬Ex1
is true or if B is true. In the first branch of Fig.3, we

can see that if E1 is true the branch will close. Abduction allows

us to assume the occurrence of event E1, which is then available as

an assumption in the other branches. In particular, it allows for the

second branch to be closed, in the case x1 is bound to 1. The third

branch closes by use of Ax1. The final outcome of the analysis

is that if event E1 occurs then there can be a conflict for pairs of

the form Obli+/Auth-. Other types of modality conflicts can be

detected by the FVT method in a similar way.



Table 1: Tableaux Rules
[∧] [∨] [→] [↔] [¬]

A ∧ B

A

B

A ∨ B

A B

A → B

¬A B

A ↔ B

A

B

¬A

¬B

¬¬A

A

[¬∧] [¬∨] [¬ →] [¬ ↔] [close]

¬(A ∧ B)

¬A ¬B

¬(A ∨ B)

¬A
¬B

¬(A → B)

A
¬B

¬(A ↔ B)

A
¬B

¬A
B

A
¬A
——

close

Policy r17 7→ E1 → O(S1, T1, A1)
Policy r18 7→ ∀x(Ex → ¬P (S1, T1, A1))
Ax1 → ∀s, t, a(O(s, t, a) → P (s, t, a))

¬E1

———

closed

if E1 occurs

O(S1, T1, A1)

¬Ex1

———

x1 = 1

¬P (S1, T1, A1)

¬O(s1, t1, a1)
—————–

s1 = S1

t1 = T1

a1 = A1

P (s1, t1, a1)
——————

Figure 3: Modality Conflict

5.2 Conflict Caused by Propagation
We show that Policies r1 and r2 described in Section 2.2.2 are

conflicting with respect to the propagation policy. Policies r1 and r2

are translated into the following sentences by using the definitions

described in Section 4.1.3 and notations described in Fig.2.

ζ(Policy r1) = ∀x(Ex → P (S5, T2, A1))
ζ(Policy r2) = ∀x(Ex → ¬P (S2, T2, A1))

where A1 stands for play. In this case, as a positive authorization

policy should propagate upwards and a negative one should prop-

agate downwards, we use the following type of propagation policy

formalization.

∀x, y, z, a(P (x, y, a) ∧ HR(z, x) → P (z, y, a))

The result of analyzing policies r1 and r2 using the FVT method

is shown in Fig.4. Since a conflict only happens if an event occurs,

we assume an arbitrary event E1 occurs. To simplify the diagram

some details are omitted, however, all tableaux including latter ex-

amples have been worked through in detail. For example, in the

first branch of Fig.4, if the variables {x1, y1, z1, a1} are given

the values {S5, T2, S3, A1}, then the branch contradicts with the

assumption HR(S3, S5) and Policy r2. From the tableaux we de-

duce that these policies conflict with each other and that the conflict

is caused by the propagation {S2, S3, S5}.

5.3 Conflict Caused by Action Composition
Next we show that Policies r5, r6 and r7 described in Section

2.2.4 become conflicting due to an action composition policy.

First the policies are translated by using the definitions described

in Section 4.1.3:

ζ(Policy r5) = ∀x(Ex → P (S6, T, A2))
ζ(Policy r6) = ∀x(Ex → ¬P (S6, T, A3))
ζ(Policy r7) = ∀x(Ex → ¬P (S6, T, A4))

arbitrary event 7→ E1

subject role structure R 7→ HR(S2, S3), HR(S3, S5), · · ·
Policy r1 7→ ∀x(Ex → P (S5, T2, A1))
Policy r2 7→ ∀x(Ex → ¬P (S2, T2, A1))
propagation policy 7→

∀x, y, z, a(P (x, y, a) ∧ HR(z, x) → P (z, y, a))

¬P (x1, y1, a1) ∨ ¬HR(z1, x1)
————————

x1 = S5

y1 = T2

z1 = S3

a1 = A1

P (z1, y1, a1)
P (S3, T2, A1)

|
|

¬P (x2, y2, a2) ∨ ¬HR(z2, x2)
————————

x2 = S3

y2 = T2

z2 = S2

a2 = A1

P (z2, y2, a2)
P (S2, T2, A1)

———

Figure 4: Conflict Caused by Propagation

arbitrary event 7→ E1

Policy r5 7→ ∀x(Ex → P (S6, T, A2))
Policy r6 7→ ∀x(Ex → ¬P (S6, T, A3))
Policy r7 7→ ∀x(Ex → ¬P (S6, T, A4))
action composition policy 7→

∀x, y(P (x, y, A2)↔P (x, y, A3) ∧ P (x, y, A4))

P (x1, y1, A2)
P (x1, y1, A3)
P (x1, y1, A4)

¬Ex2

——

x2 = 1

¬P (S6, T, A3)
———

x1 = S6

y1 = T

¬P (x1, y1, A2)
¬P (x1, y1, A3) ∨ ¬P (x1, y1, A4)

¬Ex3

——

x3 = 1

P (S6, T, A2)
———

Figure 5: Conflict Caused by Action Composition

where A2, A3, A4 are rsv travel, rsv air and rsv hotel

respectively. Second, the action composition policy given in Sec-

tion 2.2.4,

rsv travel = rsv air ∧ rsv hotel

is translated as follows.

∀x, y(P (x, y,A2)↔P (x, y, A3) ∧ P (x, y,A4))

The result of analyzing these policies using the FVT method is

shown in Fig.5. To simplify the diagram some details are omitted.

We can recognize that these policies conflict with each other since

all branches are contradictory.

5.4 Conflict Caused by Constraint Policy

5.4.1 Conflict Caused by Chinese Wall Policy

In this section we show that the FVT method can also detect a

static conflict of a Chinese wall policy. The following Policies r19,

r20 and cw1 are examples of the conflict.

Policy r19 : Auth+(S1, T1, A1)
Policy r20 : Auth+(S1, T2, A1)
Policy cw1 : CW(all, {T1, T2}, all)



arbitrary event 7→ E1

Policy r19 7→ ∀x(Ex → P (S1, T1, A1))
Policy r20 7→ ∀x(Ex → P (S1, T2, A1))
Policy cw1 7→ ∀x, y¬(P (x, T1, y) ∧ P (x, T2, y))

¬Ex1

———

x1 = 1

P (S1, T1, A1)

¬Ex2

———

x2 = 1

P (S1, T2, A1)

¬P (x3, T1, y3)
—————–

x3 = S1

y3 = A1

¬P (x3, T2, y3)
—————–

Figure 6: Conflict Caused by Chinese Wall Policy

Policy r21 7→ ∀t(T (t, I1, I3) → P (S, T, A, t))
Policy r22 7→ ∀t(T (t, I2, I4) → ¬P (S, T, A, t))
Ax3 7→ ¬∃x, y(T (t, Ix, Ix+1) ∧ T (t, Iy , Iy+1) ∧ x 6= y))

Ax4 7→ ∀x < ∀y(T (t, Ix, Iy) ↔
Wy−1

k=x
T (t, Ik, Ik+1))

T (t, Iw1
, Iw1+1)

¬T (t, I1, I3)

T (t, Ix1
, Iy1

)
———

x1 = 1
y1 = 3

¬T (t, I1, I2)
¬T (t, I2, I3)

——–

w1 = 1 or 2

P (S, T, A, t)

¬T (t, I2, I4)
|
|

T (t, Ix2
, Iy2

)
———

x2 = 2
y2 = 4

¬T (t, I2, I3)
¬T (t, I3, I4)

——–

w1 = 2 or 3

¬P (S, T, A, t)
———

Figure 7: Conflict Caused by Time Constraint Policy

Policy cw1 specifies that exactly one of the targets T1 or T2 can

be accessed. However, according to the Policy r19 and r20, sub-

ject role S1 can access both targets; that is, these three policies are

conflicting. The result of analyzing these policies using the FVT

method are shown in Fig.6. Again we can recognize that these poli-

cies conflict with each other since all branches are contradictory. A

static conflict of separation of duty policy can also be detected by

the FVT method in a similar way.

5.4.2 Conflict Caused by Time Constraint Policy

As a last example we show that a conflict caused by time con-

straint policy defined in Section 4.3.3 can be detected using the

FVT method. We use the following example Policies r21 and r22.

Policy r21 : Auth+(S, T, A, [I1, I3])
Policy r22 : Auth−(S, T, A, [I2, I4])

These policies conflict with each other because the time periods

[I1, I3] and [I2, I4] are overlapping for the same subject role, target

role and action.

The result of analyzing these policies using the FVT method is

shown in Fig.7. In Fig.7 we assume that an event t occurs in some

time unit [Iw1
, Iw1+1], where w1 is to be determined. To simplify

the diagram some details are omitted. From the result we can not

only detect that these are conflicting but also abduce that the con-

flict occurs during the time period [I2, I3] since we can get w1 = 2
by combining the result w1 = {1, 2} and w1 = {2, 3}. Namely,

to resolve the conflict we need to eliminate the overlapping period

[I2, I3] from the Policies r21 and r22.

6. RELATED WORK
P.C.K.Hung [12] mentions a conflict of interest, which is used

to define a Chinese wall policy, and separation of duties for a Web

Services environment. Also R. Bhatti et al.[4] proposes a policy

description language, called X-RBAC, developed to realize role

based access control in Web Services environment. Moreover, most

policy description languages, for example XACML[17] and Pon-

der[8], can define time constraint policy. However, none of the

methods seem to refer to policy conflict.

There are some static conflict detection methods discussed in the

literature. For example, Ribeiro et al.[20] present a method to de-

tect some inconsistent rules logically and statically, whilst S. Jajo-

dia et al.[13] describe a method which detects conflicts by using

derivation rules. Also M. Strembeck [23] presented a method to

detect a static separation of duty conflict caused by propagation.

However, these approaches do not provide information about the

cause of the conflict.

Several approaches to detect and resolve conflicting policies can

be found. Lupu et al. [16] discuss that conflicts may occur due to

the overlap of the domains to which subjects and objects belong.

A method to resolve the conflict by using priorities based on the

relationship of these domains is proposed. However, their approach

uses an implicit propagation policy defined by the domain structure

and does not deal with composite actions.

Other approaches mention conflicts that occur due to the hierar-

chical structure of the underlying organization and the associated

propagation policies. Several methods to prevent such conflicts

by precedence are proposed. For example, S. Jajodia et al.[13]

propose to resolve conflicts by using default rules such as “deny

override”. In XACML[17], Deny-overrides, Permit-overrides and

First-applicable can be defined as default rules. The novel tech-

nique presented in [3] works by inferring rule priorities based on

the role structure. However, these approaches may not always yield

the result that an administrator really intends; for instance, even in a

single system, the priorities of the various rules may differ depend-

ing on whether the situation is normal or an emergency. Therefore,

before the system starts working, either conflicting rules should be

statically detected and notified together with the reasons to the ad-

ministrator, who should then specify a method to resolve them, or

an application specific precedence policy is required.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented an approach to statically detect a

conflicting policy for an aggregation Web Services environment by

using free variable tableaux, which is a sound and complete theo-

rem prover that can be used to show inconsistency and upon which

can be built abductive reasoning. It is realized by translating each

access control policy into logic. Our method can detect not only

modality conflicts but also constraint conflicts such as propagation,

Chinese wall, time constraint and so on, all in a uniform way. We

have also ensured the usability of the approach by showing how

the conflicting policy can be detected and the conflicting informa-

tion that is very helpful to resolve the policy can be obtained. As

the tableaux method is sound and complete, it is guaranteed that

all conflicting policies can be detected. Moreover, it has the addi-

tional advantage that it can be applied to various policies written in

different policy definition languages.

In the near future, we will try to extend our method into three

directions:



i) Extension : Our method could be applied not only for poli-

cies introduced in this paper but also for other types of poli-

cies; for example a delegation policy or a devolution pol-

icy may be needed in an e-government environment. We

will consider the formalization of these policies. Moreover,

we are investigating how techniques such as temporal logic

and event calculus [15] could be included into the method to

cope with more complicated time constraints such as cyclical

events.

ii) Evaluation : We will evaluate the computational complexity

of the method and compare it with other similar approaches

for detecting conflict.

iii) Implementation : There are tools named leanTAP [2] or

leanCoP [19], which are implementation of the free variable

tableaux. We will extend this to include abduction and use it

to develop a tool that detects conflicting policies, written in

such as Ponder [8] or XACML [17].

8. ACKNOWLEDGMENTS
We would like to thank Alessandra Russo, Naranker Dulay, Emil

Lupu, Arosha Bandara and Shuichiro Yamamoto for their many

helpful comments and suggestions.

9. REFERENCES
[1] A. H. Anderson. An Introduction to the Web Services Policy

Language (WSPL). In Proceedings of the Fifth IEEE

International Workshop on Policies for Distributed Systems

and Networks (POLICY’04), June 07 - 09, 2004, New York,

USA, pages 189–192. IEEE Computer Society, June 2004.

[2] B. Beckert and J. Posegga. leanTAP : Lean Tableau-based

Deduction. Journal of Automated Reasoning, 15(3):339–358,

1995.

[3] S. Benferhat, R. E. Baida, and F. Cuppens. A

Stratification-based Approach for Handling Conflicts in

Access Control. In SACMAT ’03: Proceedings of the eighth

ACM symposium on Access control models and technologies,

Como, Italy, pages 189–195. ACM Press, June 2003.

[4] R. Bhatti, J. B. D. Joshi, E. Bertino, and A. Ghafoor. Access

Control in Dynamic XML-based Web-Services with

X-RBAC. In Proceedings of the International Conference on

Web Services, ICWS ’03, June 23 - 26, 2003, Las Vegas,

Nevada, USA, pages 243–249. CSREA Press, June 2003.

[5] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy,

A. Nadalin, N. Nagaratnam, M. Nottingham, C. von Riegen,

and J. Shewchuk. Web Services Policy Framework

(WS-Policy) Version 1.01. June 2003. http://www-

106.ibm.com/developerworks/library/specification/ws-polfram/.

[6] D. F. C. Brewer and M. J. Nash. The Chinese Wall Security

Policy. In Proceedings of the IEEE Symposium on Security

and Privacy, May 01 - 03, 1989, Oakland, California, USA,

pages 206–214. IEEE Computer Society, May 1989.

[7] D. D. Clark and D. R. Wilson. A Comparison of Commercial

and Military Computer Security Policies . In Proceedings of

the IEEE Symposium on Security and Privacy, California,

USA, pages 184–194. IEEE Computer Society, April 1987.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The

Ponder Policy Specification Language. In Proceedings of the

Policy 2001: Workshop on Policies for Distributed Systems

and Networks, Bristol, U.K., pages 18–39. Springer-Verlag

LNCS 1995, January 2001.

[9] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based

access control. ACM Transactions on Information and

System Security, 4(3):224–274, August 2001.

[10] M. Fitting. First Order Logic and Automated Theorem

Proving. Springer, second edition, 1996.

[11] H. He, H. Haas, and D. Orchard. Web Services Architecture

Usage Scenarios. W3C Working Group Note, February 2004.

http://www.w3.org/TR/2004/NOTE-ws-arch-scenarios-20040211/.

[12] P. C. K. Hung. From Conflict of Interest to Separation of

Duties in WS-Policy for Web Services Matchmaking. In

Proceedings of the 37th Annual Hawaii International

Conference on System Sciences (HICSS’04), Track 3,

January 05 - 08, 2004, Hawaii, page 30066b, January 2004.

[13] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical

Language for Expressing Authorizations. In Proceedings of

the 1997 IEEE Symposium on Security and Privacy, May 04

- 07, 1997, Oakland, California, USA, pages 31–42. IEEE

Computer Society, 1997.

[14] H. Kamoda, A. Hayakawa, M. Yamaoka, S. Matsuda,

K. Broda, and M. Sloman. Policy Conflict Analysis Using

Tableaux for On Demand VPN Framework. Proceedings of

the the First International Workshop on Trust, Security and

Privacy for Ubiquitous Computing (TSPUC 2005),

Taormina, Sicily, Italy, June 2005.

[15] R. A. Kowalski and M. J. Sergot. A Logic-based calculus of

events. New Generation Computing, 4(1):67–95, 1986.

[16] E. C. Lupu and M. Sloman. Conflicts in Policy-Based

Distributed Systems Management. IEEE Transactions on

Software Engineering, 25(6):852–869, November 1999.

[17] OASIS. eXtensible Access Control Markup Language

(XACML) Version 1.1. OASIS Standard, July 2003.

[18] OASIS. Core and Hierarchical Role Based Access Control

(RBAC) profile of XACML, Version 2.0. Committee Draft

01, November 2004. http://www.oasis-open.org/.

[19] J. Otten and W. Bibel. leanCoP: Lean Connection-Based

Theorem Proving. Journal of Symbolic Computation,

Volume 36, pages 139–161. Elsevier Science, 2003.

[20] C. Ribeiro, A. Zúquete, P. Ferreira, and P. Guedes. Security

Policy Consistency. Technical Report, INESC, June 2000.

[21] Y. Sakata, K. Yokoyama, and S. Matsuda. A Method for

Composing Process of Non-deterministic Web Services. In

Proceedings of the IEEE International Conference on Web

Services (ICWS’04), California, USA, pages 436–. IEEE

Computer Society, June 2004.

[22] R. Sandhu. Separation of Duties in Computerized

Information Systems. In Proceedings of the IFIP WG11.3

Workshop on Database Security, U.K., September 1990.

[23] M. Strembeck. Conflict Checking of Separation of Duty

Constraints in RBAC - Implementation Experiences. In

Proceedings of the Conference on Software Engineering

(SE2004), Austria, pages 224–229, February 2004.

[24] UDDI Organization. UDDI Specification. Version 3.0,

Published Specification, 2002. http://www.uddi.org/.

[25] W3C. Web Services Description Language (WSDL) 1.1.

March 2001. http://www.w3.org/TR/wsdl.

[26] W3C. SOAP Version 1.2. June 2003.

http://www.w3.org/TR/soap/.

[27] H. J. Wang, H. K. Cheng, and J. L. Zhao. Web Services

Enabled E-Market Access Control Model. International

Journal of Web Services Research, 1(1):21–40, 2004.


