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ABSTRACT 

This paper describes use cases and requirements for a privacy 
policy data schema. It describes problems with existing schemas 
in relation to these requirements (P3P 1.0, P3P 1.1 and RDFS 
schema for P3P). It proposes and motivates the use of an OWL 
schema to describe the same semantics, which fulfils all the 
requirements and may be used in a semantic web based privacy 
and identity management context. It describes the advantages 
which this gives to a policy evaluation engine based on such a 
schema and describes some of the reasoning use cases addressed 
in modelling the schema. 

Modelling the schema using OWL appears simple at first sight, 
because the entire schema can be constructed with OWL-Lite 
predicates or using one custom predicate. However, the fact that 
modal logical statements must be made about data types in the 
schema (e.g. Organization x May Collect Data of type Y) makes 
reasoning over the typing schema challenging. The paper also 
looks at syntactic and semantic validation using the schema as 
well as extensions and modifications to the vocabulary items 
supported. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – abstract data types. 

E.1 [Data Structures]: Distributed data structures, graphs and 
networks. 

General Terms 
Standardization, Languages, Theory 
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1. Introduction 
P3P [1] is a policy framework for describing web site privacy 
practices using XML. The main body of a P3P policy is made up 
of a set of statements about data collection practices. Each 
statement refers to the practices claimed for a certain type of data, 
described by "data elements" which are typed and validated 
according to a special P3P data schema. The vast majority of 
existing policies use the P3P Base Data Schema [2], the base 

typing schema provided by P3P for this purpose. The exact 
specification of this schema is outlined in  [3] . 

The P3P 1.0 base data schema is intended to provide a base set of 
data types to cover the most common categories of personal data 
about which P3P privacy policy statements might be made. The 
schema also provides extensibility  mechanisms for expressing 
custom types. The fact that it is one of the only mechanisms to 
offer this functionality for such a broad range of data types has 
meant that the P3P data schema has also been adopted for several 
other use-cases which were unforeseen by the P3P working group. 

This paper shows how an OWL [4] based semantics can be used 
in these use cases to fulfil many of the requirements that are 
problematic for the P3P base data schema. The schema is 
designed to fit into the policy architecture framework proposed in 
"P3P Using the Semantic Web (OWL Ontology, RDF Policy and 
RDQL Rules)" [5] 
One important problem resolved by this paper is that P3P makes 
statements about data types in the schema which use modal logic 
(e.g. Organization x May Collect Data of type Y). This makes 
reasoning over the typing schema challenging. The paper presents 
a solution for achieving this using available OWL reasoning tools. 

2. Use cases 
Our motivation for creating an OWL data schema for privacy 
policy languages was broader than the usage scenarios envisaged 
for P3P and our schema is designed to cover scenarios envisaged 
for both P3P and nascent enterprise privacy management 
standards such as EPAL [6] and the technologies being developed 
by the PRIME project [7], as well as to satisfy identity 
management requirements such as those for automated form 
filling and pseudonym management. In practice, the P3P data 
schema has already been used beyond its design remit in many 
projects [7],[8],[9] and it is therefore an urgent need to provide a 
schema which can satisfy these broader requirements.  

The schema we propose should allow the description of data types 
in the following policy contexts: 

a. Requesting data or credentials (the auto-form filling/Xforms 
[10] scenario). The data typing schema is used to describe the 
type of data to be inserted into a form field. 

b. Describing data or credentials (metadata). The data typing 
schema is used to describe data or credential instances. 

c. Describing data practices (P3P type scenario) according to data 
types. The data typing schema is used to describe types of data to 
which certain data handling practices may be applied. 
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d. Application of access control rules. The schema is used to 
describe types of data to which groups of access control rules 
should be applied. For example it should be able to describe the 
type used in the natural language rule: "Do not give user emaill 
addresses to third parties". 

3. Requirements on a privacy and Identity 
Management  data schema 
An analysis of the above use cases has led to the following 
specific requirements:  

1. Data types must describe data (i.e. the object is the 
information), not properties of individuals. This is needed to 
allow for types of data which are personal but do not 
necessarily apply to individuals. It is also correct 
semantically as data handling policies for example, make 
statements about data and not about individuals and their 
properties.  
 
This implies that data types must be modelled as classes 
rather than properties. So for example "email" means "data 
of type email" rather than "the email property of user x". 
This allows the model to be centred around statements about 
data collection practices rather than statements about 
individuals and their properties. It is more difficult to use 
OWL to provide meta-information about properties than it is 
about classes. The semantics of properties also breaks down 
when it comes to data types such as "user". If user is a 
property, what does it refer to? [11] breaks the schema down 
into classes and instances so that "user" is a class, while 
"prefix" is the value of a property, but this seems 
unnecessarily complex as all the types in the P3P schema can 
be described as classes of data. 

2. The schema should distinguish between abstract (cannot be 
instantiated) and concrete types. This gives the possibility to 
use the schema for data and credential requests such as 
automated form filling. It is not possible to use the P3P base 
data schemas for automatic form requests because it does not 
satisfy this requirement. But if types are designated abstract 
and concrete status, then an application can ask for say "user, 
online data" and a reasoning engine can drill down the 
schema to dig out the concrete types "home page, email 
address etc… 

3. It should be easily possible within the semantics to apply 
meta-data both to instances of data types and to the types 
themselves. This requirement is derived from the need both 
to describe data literals, and to make statements about 
classes of data when describing data handling practices. This 
is another strong reason to model data as classes and not as 
properties, because it is much more natural to apply metadata 
to classes rather than to properties. 

4. The schema should be able to describe both literals (data 
submissions) and classes of data. 

5. The semantics of the OWL base data schema should not 
conflict with any semantics which can be inferred from the 
P3P Base Data Schema unless this can be shown to be 
inconsistent with other requirements. The vocabulary used in 
the P3P Base Data Schema semantics is based on a standards 
process and thereby represents a consensus on the actual data 
types required for describing most data. Although the syntax 

and semantics is poorly expressed, the actual taxonomy 
represented has considerable value. 

6. The number of classes defined should be minimized. As with 
any data model, redundancy is to be avoided and the 
description of classes should be as normalized as possible. 

7. The schema should provide validation functionality for 
allowed data types and for the syntax of instances of a 
designated type. If the schema is to be used for typing 
instances, it is natural to provide syntactic validation 
functionality. 

8. The schema should use standardized, well-defined syntax. In 
order to foster adoption. 

9. The schema should have a well-defined semantics. This 
makes it easy to apply the schema to new use cases. 

4. Existing data schemas in relation to 
requirements 
4.1 P3P1.0 base data schema 
Some literature exists outlining problems with the Base Data 
Schema [11],[12]. [12] cites the over complexity of the syntax 
and proposes an XML schema version of the syntax which has 
now been incorporated into the P3P1.1 working draft [13]. 

In relation to the above requirements, the P3P1.0 data schema has 
the following specific problems: 

1. (Requirement 2) It does not distinguish between abstract and 
instantiatable types.  

2. (Requirement 7.) There is no provision for validation of 
instance data. 

3. (Requirement 8) The schema uses a highly complex and 
obscure custom syntax which: 

a. Does not use mechanisms available in XML syntax, which 
are commonly used to model semantics. For example it does 
not use nesting to indicate subclass or other class 
relationships, but rather a convoluted custom syntax 
involving string matching. 

b. Is not well defined – the syntax used for defining the 
relations between allowed data types can only be deduced by 
examining the base data schema and examples. It does not 
follow directly from the specification document. To take one 
example out of several: 

Data Structures are abstract types (for example "POSTAL") 
which appear in the schema, but are never actually allowed 
as types in data elements. They serve to group concrete 
elements together. Nowhere in the specification document is 
it stated that in a data schema, data structures refer to their 
child elements by parsing the data element name, splitting it 
by "." delimiters and then taking the first token! 

Another example is that, according to [1], the categories of 
the data schema (broad classes of data types) follow a 
"bubble-up rule". The meaning of this phrase is not precisely 
explained in the P3P specification, but by examining the base 
data schema, one can deduce that it means data types which 
can be expanded into further structures must inherit any 
categories which are valid for those structures. In fact, 



however, not all the categories quoted in the P3P base data 
schema do follow a "bubble-up rule". For example, the 
postal.name data structure is not (according to the official 
specification [2]) assigned to the category demographic of its 
child data structure, personname prefix. 

Many of these problems were not picked up because the 
syntax is so obscure. 

4. (Requirement 9) The semantics is also not well defined. 
There is a confusion between classes of data and properties 
of individuals. For example, "user.employer" :"Name of 
User's Employer" seems to model an object (the user) and its 
properties. But "dynamic.cookies" "Use of HTTP Cookies" 
models an abstract class of data (dynamic.cookies) and not 
the "cookies" property of a "dynamic" object. Furthermore 
the specification does not define whether syntax such as 
"user.email" is meant to represent a set of user's email 
addresses – or the intersection of the class of user data with 
the class of email data. This has important implications when 
trying to describe instance data.   

Furthermore the semantics of the dot relationship between 
the data types is not made clear. The specification says that 
elements "include" other elements, implying that the relation 
is equivalent to "subclass" but elements are also included by 
several disjoint classes, making this incoherent. It is one of 
the aims of this paper to make clear the exact semantics of 
the base data schema in order to model it using OWL. 

4.2 The P3P 1.1 Data Schema 
The P3P 1.1 Data Schema (still in draft at the time of writing) 
[13] addresses some of the problems outlined in 4.1 

a. The P3P 1.1 Data Schema prescribes a standardized XML 
syntax for describing the relationships between data 
elements. Abstract "data structures" are abandoned, and 
relationships are described simply by nesting tags within 
each other. Custom schemas can be created by referencing 
another XML schema. 

b. A more precise semantics for the elements can also be 
derived from the specification of this document. That " for an 
element <B> to be defined as an allowed child of element 
<A> means if the policy states that it may collect data of 
type <A>, then it can also be taken to state that it may also 
collect data of type <B>. " 

The use of XML rather than description logic syntax is however 
fundamentally limited because 

a. XML semantics is only informal  and is based on a 
questionable interpretation of its syntax. 

b. In practical terms, semantics expressed using a custom 
interpretation of XML syntax such as in the P3P 1.1 Data 
Schema cannot be interfaced with reasoning engines in the 
way that RDF + OWL can. Much of the utility of the data 
schema is lost because reasoning is proceduralized in 
program code which then cannot be reused. 

c. Since the structure of the schema is not well suited to 
representation as a tree (as opposed to a directed graph), a 
custom syntax has to be used to represent the structure. 

4.3 The RDFS Schema for P3P 
[14] is a previous attempt at producing a P3P data schema using 
Description Logic syntax (RDFS). The RDF Schema for P3P   
models data types as properties and describes a different class for 
every possible combination of basic data types. While it does 
provide a well-defined "p3p:extends" relation between data types, 
it also describes all possible properties created by this extension 
relation. This is highly redundant as the extension relation is then 
contained in the syntax of the class names. It also has over 350 
classes of data instead of less than 80 classes which are used to 
compose these. 
Furthermore, the definition of the extends relation as "Extends 
another dataElementComponent" suggests a parallel with object 
oriented design, which is not consistent with the semantics. (Does 
a user's email extend the properties of a user?). 
Finally, the RDFS schema's use of properties rather than classes 
does not fulfil requirement 1. 

5. Modelling Class Relationships in OWL 
OWL provides a syntax which fulfils all the above requirements. 
In using OWL, we implement the base data schema semantics in 
the context of a semantic web enabled privacy architecture as 
described in [5]. We chose OWL instead of other object oriented 
modelling languages because it gives a standard XML based 
syntax which provides the functionality required by the semantic 
web based architecture in which the schema is used. 

5.1 Reasoning use cases 
We begin by describing a reasoning use case and then go on to 
show how this can be implemented using an OWL-based 
semantics which accurately reflects the intended semantics of the 
P3P1.0 base data schema. 
Identity management and access control systems typically need to 
reason over policies or requests for broad data types which 
correspond to specific data types in a store. Some important 
reasoning use cases are as follows: 
5.1.1. A typical statement of collection practices specifies that the 
service may collect any data which is in both User and Name 
classes (i.e. specializing Name as a User, not a Business, name) 
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classes Given and Prefix (concrete types are filled in black, 
inferences dotted lines).  
5.1.2. A policy states that a company collects any data of type 
User, whereas a preference rule refers to protecting Online data. 
The reasoner needs to infer that if a service might collect User 
data, it might also collect Online data.  
5.1.3. A policy gives sensitivity ratings to data types which 
determine their release by an identity management policy. The 
reasoner selects the type with the maximum or minimum rating in 
a given context. 
Formally speaking, 5.1.1 and 5.1.2 require a system of modal 
logic since it is describing possibilities. However, we show below 
that it is possible to produce the required entailments using an 
ordinary propositional logic system such as prolog. 

5.2 Modelling the entailments using the 
structure of the P3P 1.0 Data Schema 
The P3P1.0 specification states: "P3P1.0 Data elements are 
organized into a hierarchy based on the data element name as 
specified by the data schema. A data element automatically 
"includes" all of the data elements below it in the hierarchy. For 
example, the data element representing "the user's name" 
includes the data elements representing "the user's given name", 
"the user's family name", and so on. Thus the data elements 
user.name.given, user.name.family, and user.name.nickname are 
all children of the data element user.name, which is in turn a 
child of the data element user." 
It is important to note that the exact meaning of "includes" here is 
not specified. It appears to mean "subclasses" but, if one examines 
the structure and semantics of the schema, this cannot be the case 
because data elements such as personname are used as part of 
disjoint classes such as User and Business. 
Data schemas often need to reuse a common group of data 
elements. P3P 1.0 data schemas support this through named data 
structures. A data structure is a named, abstract definition of a 
group of data elements. The name of the data structure itself (e.g. 
postal) is never actually used in a data element. We quote the P3P 
1.0 Specification's example: 
<DATA-STRUCT name="date.ymd.year" 
    short-description="Year" /> 
<DATA-STRUCT name="date.ymd.month" 
    short-description="Month"/> 
<DATA-STRUCT name="date.ymd.day" 
    short-description="Day"/> 
The structure of the P3P base data schema is, as [11] correctly 
points out, not a forest, but a semi-lattice, as elements are used 
repeatedly in different contexts. Figure 2 below is a Venn diagram 
showing a fragment of the schema classes, which illustrates the 
relation that holds between the data elements. The figure shows 
the Classes User and ThirdParty, which both include some (>1) 
values from Cert, Personname, Bdate and Gender.  
All data elements in the P3P base data schema which are 
"included" are in fact related as shown. That is if A "includes" (B 
and C) then A contains some values from B and some values from 
C and no other values unless otherwise stated (note that in fig 2, 
User is shown outside of Cert, Personname etc… because it also 
"includes" other data elements.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3 OWL semantics 
If we model all data elements as classes of data (as shown in 
figure 2), then a single relationship, "SomeValuesFromOnly" can 
be used to define the entire P3P base data schema using OWL. 
In formal set theoretic notation, then, we wish to express a 
relation R between three classes A, B and L (as shown in figure 
2), where L is an RDF collection of classes: 
If A <R> L then,  
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formally, this means that if A <R> L, where L is a list of 
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ame data, Bdate data and Gender data. Note that the Venn 
agram does not show all the classes in User and therefore User 
s some values not in Login, Name, Bdate or Gender. Note 
wever, that these classes are not subclasses of User data as they 

so share members with other classes which are disjoint from 
ser. 
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ite using the following syntax: 
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<owl:Class rdf:ID="A"> 
<owl:equivalentClass rdf:parseType="Collection"> 
<owl:Restriction> 
<owl:onProperty rdf:resource="&rdf;type" /> 
<owl:someValuesFrom rdf:resource="#B" /> 
</owl:Restriction> 
<owl:Restriction> 
<owl:onProperty rdf:resource="&rdf;type" /> 
<owl:someValuesFrom rdf:resource="#C" /> 
</owl:Restriction> 
</owl:equivalentClass> 
</owl:Class> 

This uses a restriction on the property "type" to say that some the 
class A is made up of some values of type B and some values of 
type B. The equivalent class predicate ensures that there are no 
other values included. Using this syntax, in combination with 
rules defining typical inferences to be made over the class graph 
for various policy predicates, we found that all the necessary 
deductions can be made. In order to increase reasoning efficiency, 
we decided to abbreviate the above syntax to the equivalent 
syntax: 
<owl:Class rdf:ID="A">      
  <customNS:SVFO rdf:parseType="Collection"> 
    <B/> 
    <C/> 
  </customNS:SVFO> 

</owl:Class> 

(SVFO stands for "Some Values from Only", which is an 
abbreviation of the relations expressed in OWL-Lite above 
applying to a list of objects) 
These two syntaxes are equivalent and the second is only a 
performance enhancement. We do not therefore specify the use of 
one syntax preferably to the other if performance considerations 
are addressed in some other way (e.g. introducing custom 
procedural code into reasoning engines). 
Furthermore, as in P3P1.1, we have also removed the "data 
structure" names such as "postal" which are never referred to and 
therefore complicate the schema unnecessarily. Structural 
information can be included in labels if required for readability. 
The whole schema hierarchy is then modelled using relations such 
as: 
<owl:Class rdf:ID="User">      
  <customNS:SVFO rdf:parseType="Collection"> 
    <Personname/> 
    <Cert/> 
 …… 
  </customNS:SVFO> 

</owl:Class> 

<owl:Class rdf:ID="Personname">      
  <customNS:SVFO rdf:parseType="Collection"> 
    <Given/> 
    <Prefix/> 
 ……  
  </customNS:SVFO> 

</owl:Class> 

Note that the categories of the base data schema can also be 
modelled using this syntax, since they are just another class to 
which some of the other data types stand in relation SVFO. The 
syntax for integrating categories is more succinct and readable 
than other syntaxes because it is only necessary to list the 
categories and their allowed SVFO relations. The categories then 
stand as an orthogonal system to the main hierarchy of types. 
For example, 

 <owl:Class rdf:about="#Political-data-category"> 

    <customNS:SVFO rdf:resource="#Cookies"/> 

    <customNS:SVFO rdf:resource="#Miscdata"/> 

    <rdfs:subClassOf rdf:resource="#Categories"/> 

 </owl:Class> 

6. Concrete and abstract types 
Many applications need to know whether a data type can be 
instantiated or not. For example if an application requests "User 
data", this cannot be instantiated and the application must first 
derive the concrete types inferred from the request. For this 
reason, all concrete classes are designated as type Instantiatable. 
If a type is not designated as instantiatable, then it is assumed to 
be abstract. 

7. Shortcut classes 
In order to abbreviate the syntax of typing instance data, we 
provide a set of shortcut classes for all possible instantiatable 
classes. For example for data of type User, Name and Given, the 
RDF syntax for typing an instance would be very verbose, so we 
define the class 
<owl:Class rdf:ID="User.Name.Given"> 
<rdf:type rdf:resource="#Instantiateable"/> 
<owl:intersectionOf rdf:parseType="Collection"> 
<owl:Class rdf:about="#User"/> 
<owl:Class rdf:about="#Name"/> 
<owl:Class rdf:about="#Given"/> 
</owl:intersectionOf> 

</owl:Class> 
These classes do not add anything to the semantics of the 
ontology, but make it quicker and easier to type instance data and 
to reason over the type ontology. 

8. Referencing the schema from privacy 
policies 
 

There are 3 main use cases for referring to types from the schema 
expressed using this syntax 

1. Requesting a type – in a privacy negotiation between an 
access control system and requester, the access control 
system may require information or credentials. It therefore 
needs to send hints as to the credentials required. For 
example a web service may require a certain certificate in 
order to allow access to a client. In this case, the service 
must be able to provide hints to the client as to what is 
needed to get authorization to use the service. 

This can be expressed using the following syntax  

1. Requesting typed data (Entity requests the data specifying the 
user's name). 

 
<Entity> 
<requests-data-types> 
<rdfs:Class> 

<rdfs:subClassOf rdf:resource="User"/> 
<rdfs:subClassOf rdf:resource="Name"/> 

</rdfs:Class> 
</requests-data-types> 
</Entity> 
 



(Or shorcut class syntax can also be used – see 
Sec 7.) 

2. Typing an instance (Entity Submits data of type User's Given 
Name). This is expressed using the following syntax: 

<Entity> 
<hasData> 
  <User.Name.Pseudonym> 
 <rdf:value>Pseud1</rdf:value> 
  </User.Name.Pseudonym> 
</hasData> 
</Entity> 

3. Describing a practice carried out on a data type (Entity 
collects any values which are of type User and Name i.e. the 
class which is the intersection of both these classes) 

<Entity> 
<collectsAny rdf:parseType="Collection"> 
<rdfs:Class> 
 <rdfs:subClassOf rdf:resource="User"/> 
 <rdfs:subClassOf rdf:resource="Name"/> 
</rdfs:Class> 
</ collectsAny> 
</ Entity> 

The following points are worth noting in relation to this syntax: 

• Each of these descriptions uses a different semantic to 
describe the operation on the data, but the data types are 
always referred to in terms of classes from the ontology. 
That is using rdf:type or rdfs:subClassOf. 

• In order to express a specific type, it is often necessary 
to use multiple type declarations. For instance a name 
may be a User name or a Business name so in the data 
request description, it is declared as being both of type 
User and Name to make clear this specialization. 

• As discussed in section 7, the predicates "collectsAny" 
and "requests-data-type" are in fact modal predicates 
and effectively convert DataClassX into a prototypical 
class representing all possible classes satisfying the 
subClass properties. This somewhat contradicts the 
formal semantics of OWL, however it will be shown 
that the correct deductions can still be derived using 
prolog style rules to extend the OWL semantics. 

9. Inferencing over the schema 
There are many possibilities for customized reasoning over such a 
schema, as discussed in section 5.1. We discuss below how the 
reasoning use case 5.1.1 (and implicitly also 5.1.2) may be 
implemented. These cases are key to each of the policy use cases 
described in section 2. This solution has been implemented and 
tested using the Jena API [15]. 

9.1 Deriving types of data collected or 
requested from broad types. 
The relation "SVFO" (someValuesFromOnly) defined above 
specifies a directed graph which has a tree structure.  Figure 3 
represents a typical statement about collection practices as 
described in 5.1.1 (expanding the possible types of Name data). 
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orkaround which forces the reasoning to be monotonic. 
transitivity does NOT hold for SVFO. It is not always 
 X has some values from Y and Y has some values 
n X has some values from  Z. For example if (User has 
es from Only Name and Employer) and (Name has 



some values from only Given and Prefix), we cannot deduce that 
(User has some values from Prefix), because the some values that 
User has from Name may not be any of those that Name has from 
Prefix. 
What we need from such a property however is the following: 
If and only if a service may collect any data of classes Given and 
X, and Given is in the relation SVFO to class X, where X is 
relation SVFO to class Y  then the reasoner should also return that 
the service might collect any data in class Y. (a kind of 
conditional transitivity for SVFO). 
All these requirements can be met within the limits of acceptable 
performance using the proposed OWL ontology in combination 
with prolog style rules. We used the Jena inference libraries to 
derive these inferences on a sample policy. The following two 
Jena rules correctly expand the types based as described above 
(we have abbreviated the name space declaration for brevity). The 
question mark syntax indicates universal quantification and all 
triples are ANDed in the premises and conclusions: 
Rule 1. The following complex rule ensures that the reasoner 
deduces that A is a subclass of SVFO child nodes of any class, X 
such that N requests-data-types A and A subClassOf X  where 
there is no class Y such that X <SVFO> Y (problems 1 and 2.)  
 
[(?N ns:mayCollect ?A), 

(?A rdfs:subClassOf ?X), 

unSaidSpecial(?A,ns:someValuesFrom,rdf:type,?X) 

-> 

[r3:(?A rdfs:subClassOf ?E) 

(?X rdf:type ns:marker) 

<- (?X ns:someValuesFrom ?E)]] 

Rule 2. The following rule ensures that all SVFO children of a 
class are returned as being of the same as the policy node, as long 
as they have been previously marked using the second rule 
(problem3). 
[(?A rdfs:subClassOf ?D) <- 

(?A rdfs:subClassOf ?B) 

(?B rdf:type ns:marker) 

(?B ns:someValuesFrom ?C) 

(?C ns:someValuesFrom ?D)   

] 

 

The Rule builtin, unSaidSpecial provides the required negation 
functor described above (problem 1) and is defined as follows: 
 
unSaidSpecial(A,P,Q,X) 
 
True iff for all(Y), (X,P,Y) there is no triple st (A,Q,Y)  
Note that using the shortcut classes (see sec 7.), this reasoning 
step can be performed much more simply for the case of finding 
instantiatable types, however for the case of matching preferences 
without the benefit of shortcut classes, this reasoning is still 
necessary. 

10. Validation using the OWL format 
As well as reasoning functionality, most applications require 
some validation functionality. This is of two kinds: 

10.1 Synactic validation 
This is available for concrete types such as "email". For example 
the schema can specify that the concrete type email must contain 
an @ sign – this can then be used to validate form entries for 
example. This is achieved simply by specifying the rdfs:range of 
instantiatable types described by the schema as being over an xsd 
datatype. 
e.g. 

<rdfs:range rdf:resource="&xsd;dateTime"/> 

This example shows  a builtin data type. OWL does not specify a 
mechanism for referencing user-defined xsd data types, but it 
does not prohibit their usage. The OWL specification has this to 
say about the question of user defined XML schema datatypes: 
"Because there is no standard way to go from a URI reference to 
an XML Schema datatype in an XML Schema, there is no 
standard way to use user-defined XML Schema datatypes in OWL. 
" 
If we specify a mechanism for referring to custom data types in a 
resource, we are therefore able to define a namespace containing 
syntactic validation constraints on the concrete types for the OWL 
data schema. 
For example the following could be used to validate an email 
address: 
<rdfs:range rdf:resource="&PII-DS-
XML;emailAddress"/> 

Can be specified to refer to the simpletype in the schema as 
follows: 
<simpleType name='emailAddress'> 
     <restriction base='duration'> 
      <pattern value='\w*@\w*\.\w*((\.\w*)*)?'/> 
     </restriction> 
</simpleType> 

 

10.2 Semantic validation 
A data type assignation breaks semantic validation rules if it 
refers to a type of data which cannot exist. OWL is not a language 
which is well adapted to making negation based statements of this 
kind. However, we have added disjointness relations for classes 
which should not be assigned simultaneously to data types (i.e. 
they have no common values). For example if a policy describes a 
class which is a subclass of both User and Business this should be 
flagged as invalid. More sophisticated semantic validation 
constraints may be added later. for example, a user's login can 
have only one value. This may also involve the use of custom 
rules within the reasoner module. 

11. Changes to the P3P data schema 
vocabulary 
Based on input from other researchers, we have also altered the 
available classes of the P3P data schema. For example, the 
following alterations have been made. 

1. Name is a single class rather than dividing it into user 
name and business name. It is then specialized using 
business and name classes. 

2. We have added classes corresponding to fields in 
electronic credentials,for example electronic identity 
card, drivers' licence and  passport fields. 



3. We have taken into account recommendations on 
identity document fields given in the recent ICPP study 
on identity management systems [16]. 

4. The techniques used to model credential metadata have 
also added other classes and predicates, which are out of 
the scope of this paper. For example we have added 
classes for describing proof methods for assertions 
made by credentials which fit into the typing schema. 

12. Conclusion 
OWL can be used to satisfy the requirements on data schemas for 
privacy and identity management policies within and beyond the 
use case scenarios of P3P. Some modification of the rulebase for 
reasoning over OWL is needed to deal with the modal "may 
collect values from" and "requests values from" predicates 
required by these scenarios, but this is possible using standard 
semantic web libraries. OWL data schemas can also provide 
required type validation functionality. 
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