
Application Report: An extensible policy editing API for
privacy and identity management policies

Giles Hogben,
European Commission,
Joint Research Centre,

Via Enrico Fermi 1,
21020 VA, Ispra, Italy,

+39 0332789187

giles.hogben@jrc.it

ABSTRACT
This paper describes an open source policy editing API, which
has been developed for use with privacy policies including
P3P1.1 policies, semantic web privacy policies and enterprise
privacy policies. The API has been designed to be extensible to a
wide range of policy editors for access privacy and identity
management. It is also designed to support the use of ontologies
to specify validated and updateable human readable translations
of policy elements. It provides libraries for editing any kind of
policy which is associated to URI resources and which describes
behaviour in terms of discrete statements. The paper gives a brief
overview of new features of the API which have allowed us to
generalize its application.

Categories and Subject Descriptors
D.2.6 [Software]: Programming Environments, Graphical
Environments

General Terms
Management, Design Security, Human Factors, Languages

Keywords
Policy Authoring, Applications, Semantic Web Groundings

This work was supported by the IST PRIME project; it
represents the view of the authors only.

1. INTRODUCTION
This paper is a short application report on a policy editing
framework produced by the Joint Research Centre as part of the
PRIME project. Many policy editors already exist in the context
of P3P 1.0 [1], so we concentrate in this paper on the innovations
we have introduced in order to extend the policy editing API from
a P3P editor to other types of policy editing such as enterprise
access control (privacy layer). We also discuss the introduction of
a legal hints mechanism.

2. Editor usage scenarios
The editor has been designed for the following use cases:

2.1 P3P 1.0 Policies
The editor is designed to be able to edit P3P 1.0 policies and to
output Policy Reference Files specifying which P3P 1.0 policies
apply to which sets of web resources. It is also designed to be able

to validate policies, and to give legal hints to policy writers about
points of interest in their jurisdiction.

2.2 P3P 1.1 Policies
The editor is designed to integrate the enhancements provided by
P3P1.1.[2] These are mainly in the area of the human readable
strings corresponding to policy concepts, but also include a new
data schema format.

2.3 Semantic web P3P style policies
The editor API is also designed to be able to produce policies
using P3P semantics translated into OWL (as described in [3]).

2.4 Enterprise access control (XACML style)
policies
This is the most challenging adaptation of the editor. We decided
that there are sufficient similarities in the model of P3P and
experimental privacy enhanced access control policy languages
such as EPAL [4], and [5] to be able to justify an adaptation of the
API to support editing of this type of policy.
The specification we are using is the working specification for the
Prime [6] project access control module. Although this is not
currently available publicly, it is however close to the
specification described in the publicly available document [4] in
terms of policy editing requirements. The working specification
of [6] conforms to the requirements stated in [7].
In general terms, the policy framework comprises Access Control
Policies, Data Release Policies and Data Handling Policies. All
these operate over RDF data stores and use prolog type semantics
encapsulated in XML syntax for creating inferences over access-
control rules.
 Throughout this document, we refer to this type of policy as
"XACML style" (XACML:Oasis standard – vide
http://www.oasis-open.org) as this is the closest existing standard
(apart from the W3C member submission, EPAL [4]). It is
important to note that the API requires access control policies of
this type to operate over RDF data with data typing via
RDF/OWL ontologies or P3P data schema syntax.

3. Policy editing interface API Components
3.1 Common features
Any API design always plays off simplicity against general
applicability. It is clearly not possible to build an API suitable for
building any conceivable type of policy. However, we have
managed to abstract the features of privacy and IDM policies,
including enterprise access control policy languages for privacy in

mailto:giles.hogben@jrc.it

order to maximize reuse. The following features are common to
all types of policy and therefore represent the building blocks of
the policy editor API. The API uses the MVC (Model View
Controller) paradigm, which divides the management of the user
interface and storage objects into Business (Model), Interface
(View) and Events (Control). Before reading the following
sections, the reader may wish to refer to the end-to-end
walkthrough in section 4.

3.2 Resource-policy binding
A common feature of all the above policy types is the need to
associate rules or practice statements with groups of resources.
This defines which policy should be applied to which resources in
the data space. P3P policies, for example, use Policy reference
files to associate XML P3P policies with parts of web sites which
are resources groups. We found however that this model can also
be extended to semantic web and XACML style policies as
defined in section 2.4
XACML style policies are of 2 kinds:
a. Access control policies, which associate subject, condition,

action rules with abstract data types drawn from an ontology
describing data types and credentials. A set of policies
applies in a given context defined by the administrator. Such
policies contain rules of the form:
For data or credentials of type "prime:e-Healthcard", if the
accessing subject is a doctor who is employed in hospital x,
allow access with the following obligations….

b. Access control policies which represent user preferences on
data collected. These apply rules and obligations to specific
data instances.
Such policies apply rules and obligations to specific data
instances. For example
Delete data item X, after 10 years

The API applies the same model to all of the use case policies. In
each case, the editor is required to apply rules or statements to
groups of resources. In the case of the XACML style policies, the
groups of resources are either OWL concepts (defined by a URI –
scenario a. above) or RDF triples in a datastore (defined by
reification ids, or an RDF query – scenario b. above). We have
therefore abstracted the policy-resource association function in
the API as follows.
Every editor has 3 sub-windows (see figure 1 and 2) which are
managed by a set of extensible classes according to the MVC
model.
1. The resource grouping window (top left):
Shows a list of resource groups organized by namespace or site
domain. The underlying business object is the same for all types
of policy (an XML object stores the resource groups as named
patterns according to namespace), but these business objects can
then be transformed into customized mapping objects. In other
words, the business object abstracts Policy Reference Files for
P3P1.0 and allows it to be mapped into other format (e.g.
XACML targets).
The user interfaces used for capturing patterns may differ from
the default implementations but can customize API
implementationsn by extending the PatternInterface class, which
captures the specification of the content groups from the user.
Each resource group group defines a space of resources which can

be either web URI's (P3P and Semantic Web P3P), Ontology
concepts (XACML style a.) or RDF triple sets (XACML style b.).
In P3P, this corresponds to an area of a web domain or set of
domains. In semantic web based access control, this corresponds
to a space of resources.
2. The policies window:
Shows the policies available. This is just a list of policy names
associated to their logical identifiers (file system paths), which
can be dragged onto resource groups and can be double clicked
for editing the content of the policy, using a class conforming to
the policyeditor interface. This interface is completely
independent of the format and content of the policy and it is
therefore not foreseen that this would need to be extended.
3. The mappings window:
By dragging a policy onto a resource group, the user can associate
policies to resources. This association is then automatically
displayed in a third window, the mappings window. The storage
format for mappings is abstracted from the particular format it
will eventually be output in. For example in the case of P3P, this
abstraction will be mapped to a Policy Reference File. In the case
of semantic web based access control, it may for example be
mapped to a target statement within a policy. The API implements
this abstraction using the "publish" method of the mappings tree,
which currently only implements the transformation to a P3P
Policy Reference File, but can be overridden to provide other
transformations for example using XSLT to provide target
statements within XACML style policies.

Figure 1. P3P scenario

Figure 2. Semantic Web Scenario

3.3 Statement handler
Upon opening a policy for editing, the user is presented with a list
of statements. Statements are derived directly from the XML
policy document in memory defining the policy being edited. So
in terms of the MVC architecture model, the XML document is
the model (Business object) and there is no further abstraction.
The API provides a statement management package, which
includes a class which abstracts the visualization of statements.
The class StatementType defines how human readable strings are
extracted from the XML document by means of a query string. It
also defines not only the content of the strings, but also how they
will be organized for display to the user.
In order to achieve this, the StatementType class defines the list
of attributes into which the statement is broken down. These may,
but are not required to correspond to XML attribute or tag names.
For example P3P StatementType definitions define how to extract
CONSEQUENCE, DATA, PURPOSE, RECIPIENT and
RETENTION attributes of the statement by means of XPATH
queries. This is done as follows:
Each Attribute object specifies XML or RDF queries and/or
procedural code which define its relationship to the user interface.
This allows the editor builder to define new types of statements
and attributes and their display to the user simply by defining
their attributes and queries which extract the display text.
Each attribute in a StatementViewer's AttributeList Array has a
getHRQueryString method, which returns the results an RDF or
XML query over the policy document (and may transform this
using Java code for display). This method returns the text to
display to the user to summarize the value of that attribute.
For example for P3P statements, getHRQueryString() for each
attribute returns a conversion to string of the node names returned
by the XPath queries:
".//*[local-name()='CONSEQUENCE']/*",
".//*[local-name()='DATA']/*"

".//*[local-name()='PURPOSE']/*"
Etc…
Separate XML and RDF flavours of these classes have been
defined in order that the query language is flexible.
Once the StatementViewer object for the policy editor is defined,
the API automatically creates a table displaying all non-hidden
attributes. It is assumed that statements are logically independent
objects i.e. that no inter-statement data (e.g. OR and AND) needs
to be displayed. These kind of booleans may be included in a
language but statements should be defined on a level whereby the
booleans are contained within each statement but do not connect
statements. StatementTypes can also be created dynamically if the
number of attributes is variable.
Attributes can be assigned visible or non visible status. For
example a P3P editor would not want to display the consequence
attribute of a statement in the statement summary table, so this
would be assigned hidden status.

Figure 3. StatementViewer

3.4 Statement wizard
StatementType attribute arrays (see 3.3) also define the stages of
the Statement wizard. The statement wizard proceeds through a
series of windows on a per attribute basis. The attribute array of
the StatementType therefore defines the stages of the statement
wizard. Statement wizards can also be defined using a swing card
layout to increase efficeincy.
Each attribute has a getViewer method, which uses classes
extending the abstract class AttributeEditorWindow to specify the
editing window to be displayed for that attribute.
The API provides 3 implementations of AttributeEditorWndow.
1. Typically a statement attribute editing window is a flat set of
possible values displayed as a set of strings with checkboxes next
to them. This uses a ConstrainedValueWindow The human
readable strings for this type of attribute editing window may be
defined according to an XML document or OWL ontology (See
section 4.5)

Figure 4. ConstrainedValueWindow

2. A datatype editing window (See 3.5)
3. A plaintext editing window (e.g. for P3P consequence). The
type of window required is specified. Special editing windows
can be created to replace the default implementations.
The above default implementations can be used to define attribute
viewers.

3.5 Data typing schemes
Privacy and access control policies typically have to present the
user with an ontology hierarchy of increasingly detailed data
types to select from (an XML document is also understood here as
an informal ontology). The editor API abstracts this process so
that different data schemas can be used within the same view
window as long as they have a structure representable by a JTree.
The data type editing window displays the data type tree on the
left hand side and a list of selected types on the right hand side.
The user simply moves types from the tree into the list on the
right hand side. The elements in the list of types selected combine
to make a custom type. The list element objects store the tree path
as well as the leaf node selected so that they can be edited later.
The user can dynamically select different source files for the tree
representation.
The API provides the abstract DataSchemaTreeViewer class
which has the abstract LoadTree() method. This defines how the
data typing schema is mapped onto the JTree. We will provide 3
implementations of this method - for P3P 1.0 [1], 1.1 [2] and
OWL [8] versions of the P3P data schema. Once this mapping has
been made, the chosen types are be inserted directly into the
policy without further reference to the schema. New schemas of
the given type can be loaded dynamically.
Future work would include an editor for creating custom data
schemas. Figure 6 shows the datatype editing window with the
P3P base data schema loaded in the left pane and the types
selected in the right pane. Above the schema tree is a button for
loading a new schema tree.

Figure 6. Datatype editing window

3.6 Linking of option handling and human
readable strings to ontologies.
Because of the importance of displaying human readable
translations of attributes in a consistent way [see 9], label strings
for ConstrainedWindow [See Section 3.4.1] implementations are
taken from an XML specification document which may be either
an RDF ontology, or an XML document.
In the case of P3P, the latter is just a translation into XML of the
Human readable translations in the draft P3P 1.1 specification [9].
The checkboxes and their labels are created dynamically from this
document by the getAlternatives method of the Attribute object.
The exact method of associating human readable strings to
checkboxes depends on whether an XML specification document
is used, or an RDF ontology.
1. For an XML specification: each Alternative in the

Attribute's alternative array is an object which can return an
XML fragment from its getXML() method. This is the XML
fragment to be inserted into the statement being edited if the
choice is selected. It may also be derived from a query over
an XML schema in order to minimize programming work in
case of changes to the specification schema.
Each alternative also has a getHumanReadable() method

which performs a query over a human readable equivalences
document in well-defined format, in order to return the
human readable string for that alternative. In our
implementation, the equivalences are stored as fragments of
the document with sibling CDATA text nodes containing the
human readable equivalent.
For example the PURPOSE translations are stored as
follows:
<equivalence>

<node><ours/></node>
<hrstring>Only parties related to this site</hrstring>

<equivalence>
The user's choices are then automatically saved to the
Statement's base document when the user click's OK by
inserting the node associated to the alternative into the
statement.

2. For an OWL ontology (parsed by the Jena [10] API): The
procedure for extracting and displaying the alternatives is

the same as 1. except that the query extracting the
equivalence will be an RDF query rather than an XPATH
query.

3.7 Use of XSLT transforms for policy views.
The base window of the policy editor shows a set of views of the
policy being edited. These views are produced by XSLT
transforms which define views such as for example Human
readable, statement summary and To Do (a list of incomplete
parts of a policy). Another important view is the legal hints view
(See next section).
The policy views can also be produced using prolog style rules
running over RDF (e.g. using Jena rules). This then outputs a set
of statements inferred from the policy, with a transformation to
natural language. (See also 3.8).

Figure 7. Policy Transformation View (Mirrors view in MS

Internet Explorer Privacy Report)

3.8 Legal hints mechanism
In Europe particularly, regulatory bodies have been concerned
about the possibility of privacy languages which enable policy
authors to write policies which specify data processing practices
which are illegal in the author's jurisdiction.
One important policy view provided by the API is the legal hints
view. This is based on XSLT transformation rules or RDF based
rules which provide users with comments on the policy they have
created based on legal knowledge encoded in the rules. It is
envisaged that XSLT transforms or other inference rules will be
imported based on jurisdiction.
For example if a user creates a P3P policy which says that they
will use email data to contact the user without an opt-out (which
would be illegal in Europe according to [11]), the legal hints can
inform the user that this is an illegal practice in Europe. It is
possible in future versions that these rules could also offer a set of
corrections to the user.

4. Process walkthrough

5. Conclusion
The API described above provides a useful tool for policy
authoring in many scenarios in the field of policies for the web. It
provides an extensible framework for policy-resource association,
statement management and statement composition. It also
provides a framework for providing legal hints and different
policy views.

6. REFERENCES
[1] Platform for Privacy Preferences Specification, Cranor
et al. ,Platform for Privacy Preferences, W3C
Recommendation, http://www.w3.org/tr/p3p
[2] Cranor, Dobbs, Egelman, Hogben et al., The Platform
for Privacy Preferences 1.1 (P3P1.1) Specification W3C
Working Draft 4 January 2005
http://www.w3.org/TR/2005/WD-P3P11-20050104/

[3] Hogben, G. P3P Using the Semantic Web (OWL
Ontology, RDF Policy and RDQL Rules), W3C Working
Group Note 3 September 2000,
http://www.w3.org/P3P/2004/040920_p3p-sw.html
[4] Powers, C., Schunter, M., Enterprise Privacy
Authorization Language (EPAL 1.2), W3C Member
Submission 10 November 2003,
http://www.w3.org/Submission/EPAL/
 [5] Piero A. Bonatti_ Ernesto Damiani_ Sabrina De Capitani di
Vimercati_ Pierangela Samarati, A Component-based Architecture
for Secure Data Publication_
http://www.acsac.org/2001/papers/114.pdf

[6] Privacy and Identity Management in Europe, European
Research Project, see http://www.prime-project.eu.org

[7] Wilikens, M. et al., PRIME Requirements - Part 3:
Application requirements, http://www.prime-
project.eu.org/public/prime_products/deliverables/pub_del
_D01.1.a.part3_ec_wp03.1_V5_final.pdf
[8] Hogben, G., Describing the P3P base data schema using
OWL, Proceedings of PM4W, WWW2005 workshop.

[9] See Section on User Agent Guidelines, P3P 1.1 Draft
Specification, http://www.w3.org/TR/2005/WD-P3P11-
20050104/#ua
[10] Jena semantic web API, HP Labs, see
http://jena.sourceforge.net
[11] EU Directive 2002/58/EC on Privacy and Electronic
Communications

http://www.w3.org/P3P/2004/040920_p3p-sw.html
http://www.w3.org/Submission/EPAL/

	INTRODUCTION
	Editor usage scenarios
	P3P 1.0 Policies
	P3P 1.1 Policies
	Semantic web P3P style policies
	Enterprise access control (XACML style) policies

	Policy editing interface API Components
	Common features
	Resource-policy binding
	Statement handler
	Statement wizard
	Data typing schemes
	Linking of option handling and human readable strings to ont
	Use of XSLT transforms for policy views.
	Legal hints mechanism

	�
	Process walkthrough
	Conclusion
	REFERENCES

