
Representing Security Policies in Web Information
Systems

Félix J. García
Clemente

Departamento de
Ingeniería de la

Información y las
Comunicaciones

Campus de Espinardo, s/n
30.071 Murcia, Spain

+34 968 367645

fgarcia@dif.um.es

Gregorio Martínez
Pérez

Departamento de
Ingeniería de la

Información y las
Comunicaciones

Campus de Espinardo, s/n
30.071 Murcia, Spain

+34 968 367646

gregorio@dif.um.es

Juan A. Botía
Blaya

Departamento de
Ingeniería de la

Información y las
Comunicaciones

Campus de Espinardo, s/n
30.071 Murcia, Spain

+34 968 367317

juanbot@um.es

Antonio F. Gómez
Skarmeta

Departamento de
Ingeniería de la

Información y las
Comunicaciones

Campus de Espinardo, s/n
30.071 Murcia, Spain

+34 968 364607

skarmeta@dif.um.es

ABSTRACT
Policies, which usually govern the behaviour of networking
services (e.g., security, QoS, mobility, etc.), are becoming an
increasingly popular approach for the dynamic regulation of web
information systems. The adoption of a policy-based approach for
controlling a system requires an appropriate policy representation
regarding both syntax and semantics, and the design and
development of a policy management framework. In the context
of the Web, the use of languages enriched with semantics (i.e.
semantic languages) has been limited primarily to represent Web
content and services. However the capabilities of these languages,
coupled with the availability of tools to manipulate them, make
them well suited for many other kinds of application, as policy
representation and management. This paper provides the current
trends of policy-based management enriched by semantics applied
to the protection of web information systems. It also presents an
approach for using DMTF Common Information Model (CIM)
ontology with semantic languages.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information System]:
Security and Protection.

General Terms
Management, Security, Languages

Keywords
Semantic Languages, Security Policy, CIM Ontology

1. INTRODUCTION
One of the main goals of policy-based management is to enable
network, service and application control and management at a
high abstraction layer. Using a policy language, the administrator
specifies rules that describe domain-wide policies which are
independent of the implementation of the particular network node,
service and/or application. It is, then, the policy management
architecture that provides support to transform and distribute the
policies to each node and thus enforce a consistent configuration

in all the elements involved. This is a prerequisite for achieving a
mean to dynamically constrain and regulate the behaviour of a
system without the human cooperation.

In the web information systems security field, a policy (i.e.,
security policy) can be defined as a set of rules and practices
describing how an organization manages, protects and distributes
sensitive information at several levels. Security policies can be
defined to perform a wide variety of actions, from IPsec/IKE
management (example of network security policy) to access
control over a web server (example of application-level policy).

Researchers have proposed multiple approaches for policy
specification. They range from formal policy languages that a
computer can directly process, to rule-based policy notation using
an if-then-else format, or to the representation of policies based on
Deontic logic for obligation and permissibility rules.

To cover this wide range of security policies languages, this paper
aims to examine the current state of policy engines and policy
languages, focusing on the approaches enriched with semantics
(i.e. semantic languages) using RDF [11] and OWL [2] as
standards for policy specification. We intend to show the
strengths and limitations of such languages by comparing three
approaches: KAoS, Rei and SWRL.
The major benefit of specifying security policy rules in this way
is that an organization can utilize a common ontology that can be
shared amongst services and service clients. In this sense, DMTF
presents the Common Information Model (CIM) standard [4] to
provide a common definition of management-related information.
This paper also presents an approach for using CIM ontology with
semantic languages. It permits an administrator to formally
describe the security policies of an administrative domain using
the DMTF methodology.
This document is structured as follows. Section 2 presents the
requirements of policy frameworks, focusing on policy languages
and policy architectures. Then, section 3 presents a comparative
analysis between “traditional” non-semantic and semantic policy
frameworks to emphasize the advantages of semantic approaches.
Section 4 describes and compares the three semantic approaches
aforementioned. Then, section 5 presents the extension of the
semantic policy language SWRL with the CIM ontology and
shows an example for an authorization policy. Finally, we
conclude the paper with our remarks and some future directions
derived from this work.

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

2. REQUIREMENTS FOR A POLICY
FRAMEWORK
The policy administrator needs to use a policy language that
assures that the representation of policies guarantee the following
requirements:

� Well-defined. A policy language can be considered as well-
defined if the syntax and structure is clear and no-ambiguous,
and the meaning of a policy written in this language is
independent of its particular implementation.

� Flexibility and extensibility. A policy language has to be
flexible enough to allow new policy information to be
expressed, and extensible enough to allow new types of policy
to be added in future versions of this language.

� Interoperability with other languages. There are usually
several languages that can be used in different domains to
express similar policies, and interoperability is a must to allow
different services or applications from these different domains
to communicate with each other according to the behaviour
stated in these policies.

Once the policy has been defined for a given administrative
domain, a management architecture is required to transfer, store
and enforce this policy in that domain. The main requirements for
such policy management architecture are:

� Well-defined interface. Policy architectures need to have a
well-defined interface independent of the particular
implementation in use. In it, the interfaces between the
components need to be clear and no-ambiguous.

� Flexibility and definition of abstractions to manage a wide
variety of device types. The system architecture should be
flexible enough to allow addition of new types of devices with
minimal updates and recoding of existing management
components.

� Interoperability with other architectures (inter-domain). The
system should be able to interoperate with other architectures
that may exist in other administrative domains.

� Conflict Detection. It has to be able to check that a given
policy does not conflict with any other existing policy.

� Scalability. It should maintain quality performance under an
increased system load.

The policy framework has to support all these requirements to
guarantee the correct system operation.

3. ADVANTAGES OF SEMANTIC
SECURITY POLICY FRAMEWORKS
There are some non-semantic security policy frameworks such as
Ponder [3] and XACML [7] that we describe briefly as follows:
� Ponder, is a declarative, object-oriented language developed

for specifying management and security policies. Ponder
permits to express authorizations, obligations, information
filtering, refrain policies, and delegation policies. Ponder can
describe any rule to constrain the behaviour of components, in a
simple and declarative way.

� The eXtensible Access Control Markup Language (XACML)
describes both an access control policy language and a
request/response language. The policy language provides a
common means to express subject-target-action-condition
access control policies and the request/response language

expresses queries about whether a particular access should be
allowed and describes answers to those queries.

However, they do not take care of the description of the content
of the policy (e.g., description of the specified components, the
system, etc). The adoption of a semantic web language can
overcome this limitation since it uses an ontology to describe the
content of the policies.
In general, table 1 shows a comparative between semantic and
non-semantic policy languages based on [9] and complemented
with our own analysis [6].

Table 1. Comparative analysis between semantic and
non-semantic policy languages

 Semantic
Languages

Non-Semantic
Languages

Abstraction Multiple levels Medium and low
level

Extensibility Easy and at runtime Complex and at
compile-time

Representability Complex
environments

Specific
environments

Readability Specialized tools Direct

Interoperation By common ontology By interfaces

Enforcement Complex Easy

Semantic approaches using RDF/OWL (see Section 4) as
standards for policy representation enable runtime extensibility
and adaptability of the system, as well as the ability to analyse
policies relating to entities described at different levels of
abstraction. The representation facilitates careful reasoning about
policy disclosure, conflict detection, and harmonization about
domain structure and concepts. However, it is required complex
policy automation mechanisms for enforcement.

4. SEMANTIC SECURITY POLICY
LANGUAGES
As stated before, security policies can be specified at different
levels of abstraction. The process starts with the definition of a
business security policy. This can be the case of the next
authorization security policy, which is defined in natural
language: “Permit the access to the e-payment service, if the user
is in the group of customers registered for this service”.
Next, the security policy is usually expressed by a policy
administrator as a set of IF-THEN policy rules, for example: IF
((<Requester> is member of Payment Customers) AND
(<Server> is member of Payment Servers)) THEN (<Requester>
granted access to <Server>)
The policy languages we will be analyzing in this section are able
to specify several types of security policies and will be used to
provide policy examples related to this case study.
Although many semantic policy specifications exist, we have
selected three of them as they are considered nowadays as
promising options: KAoS, Rei and SWRL.

4.1 KAoS
KAoS [10] is a collection of services and tools that allow for the
specification, management, conflict resolution, and enforcement

of deontic-logic-based policies within domains describing
organizations of human, agent, and other computational actors.

KAoS uses ontology concepts encoded in OWL to build policies.
The KAoS Policy Service distinguishes between authorization
policies and obligation policies. The applicability of the policy is
defined by a set of conditions or situations whose definition can
contain components specifying required history, state and
currently undertaken action. In the case of the obligation policy
the obligated action can be annotated with different constraints
restricting possibilities of its fulfilment.

The current version of the KAoS Policy Ontologies (KPO)
defines basic ontologies for actions, conditions, actors, various
entities related to actions, and policies. It is expected that for a
given application, the ontologies will be further extended with
additional classes, individuals, and rules.

Figure 1 shows an example of the type of policy that
administrators can specify using KAoS. It is related with the case
study described earlier.

<owl:Class rdf:ID="PaymentAuthAction">
<owl:intersectionOf rdf:parseType="owl:collection">
 <owl:Class rdf:about="&action;AccessAction"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&action;#performedBy"/>
 <owl:toClass
 rdf:resource="&domains;MembersOfPayCustomer"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&action;#performedOn"/>
 <owl:toClass

 rdf:resource="&domains;MembersOfPayServer"/>
 </owl:Restriction>
</owl:intersectionOf>
</owl:Class>
<policy:PosAuthorizationPolicy rdf:ID=”PaymentAuthPolicy1”>
 <policy:controls rdf:ID=”PaymentAuthAction”/>
 <policy:hasSiteOfEnforcement rdf:resource=”#TargetSite”/>
 <policy:hasPriority>1</policy:hasPriority>
</policy:PosAuthorizationPolicy>

Figure 1. Example of policy representation in KAoS
KAoS defines a Policy Framework that includes the following
functionality:
� Creating/editing of policies using KAoS Policy

Administration Tool (KPAT). KPAT implements a graphical
user interface to policy and domain management functionality.

� Storing, de-conflicting and querying policies using KaoS
Directory Service.

� Distribution of policies to Guard, which acts as a policy
decision point.

� Policy enforcement/disclosure mechanism, i.e. finding out
which policies apply to a given situation.

Every agent in the system is associated with a Guard. When
an action is requested, the Guard is automatically queried to
check whether the action is authorized based on the current
policies and, if not, the action is prevented by various
enforcement mechanisms. Policy enforcement requires the ability

to monitor and intercept actions, and allow or disallow them
based on a given set of policies. While the rest of the KAoS
architecture is generic across different platforms, enforcement
mechanisms are necessarily specific to the way the platform
works.

4.2 Rei
Rei [5] is a policy framework that integrates support for policy
specification, analysis and reasoning. Its deontic-logic-based
policy language allows users to express and represent the
concepts of rights, prohibitions, obligations, and dispensations. In
addition, Rei permits users to specify policies that are defined as
rules associating an entity of a managed domain with its set of
rights, prohibitions, obligations, and dispensations.

Rei provides a policy specification language in OWL-Lite that
allows users to develop declarative policies over domain specific
ontologies in RDF, DAML+OIL and OWL.

A policy primarily includes a list of granting and a context used to
define the policy domain. A granting associates a set of
constraints with a deontic object to form a policy rule. This allows
reuse of deontic objects in different policies with different
constraints and actors. A deontic object represents permissions,
prohibitions, obligations and dispensations over entities in the
policy domain. It includes constructs for describing what action
(or set of actions) the deontic is described over, who the potential
actor (or set of actors) of the action is and under what conditions
is the deontic object applicable.

An action is one of the most important in the Rei specifications as
policies are described over possible actions in the domain. The
domain actions describe application or domain specific actions,
whereas the speech acts are primarily used for dynamic and
remote policy management.

There are six subclasses of SpeechAct: Delegate, Revoke,
Request, Cancel, Command, and Promise. A valid delegation
leads to a new permission. Similarly, a revocation speech act
nullifies an existing permission (whether policy based or
delegation based) by causing a prohibition. An entity can request
another entity for a permission, which if accepted causes a
delegation, or to perform an action on its behalf, which if
accepted causes an obligation. An entity can also cancel any
previously made request, which leads to a revocation and/or a
dispensation. A command causes an obligation on the recipient
and the promise causes an obligation on the sender.

To enable dynamic conflict resolution, Rei also includes meta-
policy specifications, namely setting the modality preference
(negative over positive or vice versa) or stating the priority
between rules within a policy or between policies themselves.

Figure 2 shows an example to illustrate the policy representation
in Rei. It is related with the case study described earlier.

<constraint:SimpleConstraint rdf:ID=”IsPayCustomer”
 constraint:subject=”#RequesterVar”
 constraint:predicate=”&example;memberOf”
 constraint:object=”&example;payCustomer”/>
<constraint:SimpleConstraint rdf:ID=”IsPayServer”
 constraint:subject=”#PayServerVar”
 constraint:predicate=”&example;memberOf”
 constraint:object=”&example;payServer”/>

<constraint:And rdf:ID=”ArePayCustomerAndPayServer”
 constraint:first=”#IsPayCustomer”
 constraint:second=”#IsPayServer”/>
<deontic:Permission rdf:ID=”PayServerPermission”>
 <deontic:actor rdf:resource=”#RequesterVar”/>
 <deontic:action rdf:resource=”&example;access”/>
 <deontic:constraint
 rdf:resource=”#ArePayCustomerAndPayServer”/>
</deontic:Permission>
<policy:Policy rdf:ID=”PaymentAuthPolicy1”>
 <policy:grants rdf:resource=”#PayServerPermission”/>
 </policy:Policy>

Figure 2. Example of policy representation in Rei
The Rei framework provides a policy engine that reasons about
the policy specifications. The engine accepts policy specification
in both the Rei language and in RDF-S [1], consistent with the
Rei ontology. Specifically, the engine automatically translates the
RDF specification into triplets of the form (subject, predicate,
object). The engine also accepts additional domain-dependent
information in any semantic language that can then be converted
into this recognizable form of triplet. The engine allows queries
according to the Prolog language about any policies, meta-
policies, and domain dependent knowledge that have been loaded
in its knowledge base.
The Rei framework does not provide an enforcement model. In
fact, the policy engine has not been designed to enforce the
policies but only to reason about them and reply to queries.

4.3 SWRL
Semantic Web Rule Language (SWRL) [8] is based on a
combination of the OWL DL and OWL Lite sublanguages of the
OWL with the Unary/Binary Datalog RuleML sublanguages.
SWRL extends the OWL abstract syntax to include a high-level
abstract syntax for Horn-like rules. A model-theoretic semantics
is given to provide the formal meaning for OWL ontologies
including rules written in this abstract syntax.
We distinguish between the following facts/rules for policy
representation:
� Structural/organizational facts and rules. These rules are

used to encode domain specific ontologies.
� Service definition facts and rules, provided with links to the

structural rules and facts.
� Task-specific rules and facts, provided by the service clients.
SWRL is defined by an XML syntax based on RuleML and the
OWL XML Presentation Syntax. The rule syntax is illustrated
with the following example related with the case study described
earlier.
<ruleml:imp>
 <ruleml:_head>
 <swrlx:individualPropertyAtom
 swrlx:property="GrantedAccess">
 <ruleml:var>requester</ruleml:var>
 <ruleml:var>server</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
 <ruleml:_body>
 <swrlx:classAtom>
 <owlx:Class owlx:name="User" />
 <ruleml:var>requester</ruleml:var>
 </swrlx:classAtom>

 <swrlx:classAtom>
 <owlx:Class owlx:name="Server" />
 <ruleml:var>server</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom swrlx:property="Member">
 <ruleml:var>requester</ruleml:var>
 <owlx:Individual owlx:name="#PayCustomer" />
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="Member">
 <ruleml:var>server</ruleml:var>
 <owlx:Individual owlx:name="#PayServer" />
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
</ruleml:imp>

Figure 3. Example of policy representation in SWRL
A useful restriction in the form of the rules is to limit antecedent
and consequent classAtoms to be named classes, where the
classes are defined purely in OWL. Adhering to this format makes
it easier to translate rules to or from existing or future rule
systems, including Prolog.

4.4 Comparative Analysis
Table 2 shows a comparison of the aforementioned security

policy languages. Many aspects can be identified as part of this
comparison, although the most relevant are:

� Approach. Two types of approaches have been identified:
rule-based and deontic logic-based.

� Specification language. It can be XML, RDF-S or OWL.
� Tools for policy specification.
� Reasoning engine for policy analysis and verification.
� Enforcement support to the policy deployment.
Table 2. Comparative analysis between KAoS, SWRL and Rei

OWL has a limited way of defining restrictions using the tag
owl:Restriction. This limitation also appears in KAoS, but SWRL
overcomes it by the extending the set of OWL axioms including
horn-like rules. On the other hand, SWRL is not limited to deontic
policies as it happens in Rei and KAoS.

5. USING CIM ONTOLOGY WITH
SEMANTIC LANGUAGES
The Common Information Model (CIM) is an approach from the
DMTF that applies the basic structuring and conceptualization
techniques of the object-oriented paradigm to provide a common

 KAoS Rei SWRL

Approach Deontic Logic Deontic Logic +
Rules Rules

Specification
language DAML/OWL Prolog-like

syntax + RDF-S

Prolog-like
syntax +

OWL

Tools for
specification KPAT No No

Reasoning KAoS engine Prolog engine Prolog engine

Enforcement Supported External
Functionality

External
Functionality

definition of management-related information for systems,
networks, users, and services.

The CIM model is independent of any implementation or
specification. However, for an information model to be useful, it
must be mapped into some implementation. As Figure 4 showed,
CIM can be mapped to several structured specifications.

CIM Meta Model
(class, property, association ,…)

CIM Models
(core, common, extensions)

Meta Model
Level

Models Level

CIM
Implementation

Level XMLPIBMIB OWL
Figure 4. CIM modelling levels

An advantage of CIM is that the model can be mapped to
structured specifications such as OWL, which can then be used to
define management resources for Web Information System
(WIS). Also note that the mapping of CIM to a valid
representation for WIS is beneficial, since it permits to model
WIS components using the DMTF methodology and hence obtain
a standard and interoperable representation of it.
According to our approach, regarding the mapping of CIM into
OWL, the main principles identified as part of this process are:
� Every CIM class generates a new OWL class using the tag

<owl:Class>.
� Every CIM generation (inheritance) is expressed using the

tag <rdfs:subClassOf>.
� Every CIM class attribute is specified using the tag

<owl:DatatypeProperty> for literal values or
<owl:ObjectProperty> as references to class instances.

� Every CIM association is expressed as an OWL class with
two <owl:ObjectProperty> where their identifiers (i.e.,
<rdf:ID>) are the names of the properties of the CIM
association; this is the most suitable general-purpose
mechanism currently available.

An example of these transformations for the CIM classes related
to the user authorization is now presented and explained. CIM
defines the classes depicted in Figure 5 to represent the
management concepts that are related to an authorization
privilege. Privilege is the base class for all types of activities,
which are granted or denied to a subject by a target.
Authorized-Privilege is the specific subclass for the authorization
activity.

(See Core Model)
ManagedElement

Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities : uint16 []
ActivityQualifiers : string []
QualifierFormats: uint16 []

AuthorizedTarget

*

*

*

*

AuthorizedPrivilege

Collection

(See Core Model)

Role

CreationClassName: string {key}
Name: string {key}
BusinessCategory: string
CommonName: string {Req'd}

AuthorizedSubject

Figure 5. UML diagram of User-Authentication classes

Whether an individual Privilege is granted or denied is defined
using the PrivilegeGranted boolean. The association of subjects to
AuhorizedPrivileges is accomplished explicitly via the association
AuthorizedSubject. The entities that are protected (targets) can be
similarly defined via the association AuthorizedTarget. Note that
AuthorizedPrivilege and its AuthorizedSubject/Target
associations provide a static mechanism to represent authorization
policies.
An example of the mapping of these CIM classes to OWL is
illustrated in the Figure 6. This example shows a fragment of the
mapping of CIM class Privilege and CIM association
AuthorizedSubject.
<owl:Class rdf:ID=”CIM_Privilege”>
 <rdfs:subClassOf
 rdf:resource=”CIM_ManagedElement”/>
</owl:Class>
<owl:Class rdf:ID=”CIM_AuthorizedSubject”>
 <rdfs:subClassOf rdf:resource=”LogicalEntity”/>
</owl:Class>
<rdf:DatatypeProperty rdf:ID=”InstanceID”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”String”/>
</rdf:DatatypeProperty>
<rdf:DatatypeProperty rdf:ID=”PrivilegeGranted”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”Boolean”/>
</rdf:DatatypeProperty>
<rdf:DatatypeProperty rdf:ID=”Activities”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”Uint16”/>
</rdf:DatatypeProperty>
<rdf:DatatypeProperty rdf:ID=”ActivityQualifers”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”String”/>
</rdf:DatatypeProperty>
<rdf:DatatypeProperty rdf:ID=”QualiferFormats”>
 <rdfs:domain rdf:resource=”CIM_Privilege”/>
 <rdfs:range rdf:resource=”Uint16”/>
</rdf:DatatypeProperty>
<rdf:ObjectProperty rdf:ID=”Privilege”>
 <rdfs:domain rdf:resource=”CIM_AuthorizedSubject”/>
 <rdfs:range rdf:resource=”CIM_ManagedElement”/>
</rdf:ObjectProperty>
<rdf:ObjectProperty rdf:ID=”PrivilegedElement”>
 <rdfs:domain rdf:resource=”CIM_AuthorizedSubject”/>
 <rdfs:range rdf:resource=”CIM_ManagedElement”/>
</rdf:ObjectProperty>

Figure 6. A fragment of the mapping of Privilege and
AuthorizedSubject into OWL

Note that the ontological representation of CIM (i.e., OWL
representation) permits to represent a CIM ontology that can be
used in semantic policy languages (e.g., SWRL).
SWRL uses ontology concepts encoded in OWL to build rules. It
can be extended with the OWL CIM ontology. For example, rule
syntax is illustrated in the Figure 7 related with the case study
described earlier.
<ruleml:imp>
 <ruleml:_body>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_Role"/>
 <ruleml:var>server</ruleml:var>

 </swrlx:classAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_Role" />
 <ruleml:var>requester</ruleml:var>
 </swrlx:classAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_AuthorizedPrivilege" />
 <ruleml:var>privilege</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom swrlx:property="Name">
 <ruleml:var>server</ruleml:var>
 <owlx:Individual owlx:name="#PayServer" />
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="Name">
 <ruleml:var>requester</ruleml:var>
 <owlx:Individual owlx:name="#PayCustomer" />
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="Name">
 <ruleml:var>privilege</ruleml:var>
 <owlx:Individual owlx:name="#GrantedAccess" />
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_AuthorizedTarget" />
 <ruleml:var>authtarget</ruleml:var>
 </swrlx:classAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="CIM_AuthorizedSubject" />
 <ruleml:var>authsubject</ruleml:var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom swrlx:property="Privilege">
 <ruleml:var>authtarget</ruleml:var>
 <ruleml:var>privilege</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="TargetElement">
 <ruleml:var>authtarget</ruleml:var>
 <ruleml:var>server</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="Privilege">
 <ruleml:var>authsubject</ruleml:var>
 <ruleml:var>privilege</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom
 swrlx:property="PrivilegedElement">
 <ruleml:var>authsubject</ruleml:var>
 <ruleml:var>requester</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
</ruleml:imp>
Figure 7. Example of policy representation in SWRL using the

CIM ontology

6. CONCLUSIONS
This paper has provided some discussions of the most relevant
security-aware semantic specification languages and information
models. Our perspective on the main issues and problems of each
of them has also been presented, based on different criteria such
as their approach or the specification technique they use. It has
also presented an approach for using CIM ontology with the
semantic languages.

Our future work is being planned to investigate how the CIM
information model can be used as ontology for other semantic
security policy languages. In this sense the current research work
undertaken in the POSITIF EU IST project [12] is gathering
requirements of security management in web and information
systems and defining, based on the work presented in this paper, a
semantic security policy language able to formally define the
desired security policy.

7. ACKNOWLEDGMENTS
This work has been partially funded by the EU POSITIF
(Policy-based Security Tools and Framework) IST project
(IST-2002-002314).

8. REFERENCES
[1] Brickley, D., and Guha, R. V. (2004, January). Rdf

vocabulary description language 1.0: Rdf schema. Technical
report, W3C Working Draft.

[2] Connolly, D., Dean, M., Harmelen, F., Hendler, J., Horrocks,
I., McGuinness, D. L., Patel-Scneider, P. F., and Stein, L. A.
(2003, February). Web ontology language (owl) reference
version 1.0. Technical report, W3C Working Draft.

[3] Damianou, N., Dulay, N., et al. (2001). The Ponder Policy
Specification Language. Policy 2001: Workshop on Policies
for Distributed Systems and Networks. Springer-Verlag.

[4] Distributed Management Task Force, inc. (2005). Common
Information Model (CIM) Standards, version 2.9.0.

[5] Kagal, L., Finin, T., and Johshi, A. (2003). A Policy
Language for Pervasive Computing Environment. Policy
2003: Workshop on Policies for Distributed Systems and
Networks. Springer-Verlag.

[6] Martinez Perez, G., Garcia Clemente, F.J., Gomez Skarmeta,
A.F. (2005), Policy-Based Management of Web and
Information Systems Security: an Emerging Technology,
Idea Group Inc., in press.

[7] OASIS (2004, December). Extensible Access Control
Markup Language (XACML), version 2.0, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[8] The Rule Markup Initiative (2004, May). SWRL: A
Semantic Web Rule Language Combining OWL and
RuleML, version 0.6.

[9] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri,
N., and Uszok, A. (2003). Semantic Web languages for
policy representation and reasoning: A comparison of KAoS,
Rei, and Ponder. The Semantic Web—ISWC 2003.
Proceedings of the Second International Semantic Web
Conference. Springer-Verlag.

[10] Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., et al. (2003).
KAoS Policy and Domain Services: Toward a Description-
Logic Approach to Policy Representation, Deconfliction, and
Enforcement. Policy 2003: Workshop on Policies for
Distributed Systems and Networks. Springer-Verlag.

[11] W3C. (1999, February). Resource description framework
(rdf), data model and syntax. W3C Recommendation.

[12] EU IST POSITIF (Policy-based Security Tools and
Framework) Project, http://www.positif.org/

