
Predicates for Boolean web service policy languages
Anne H. Anderson

Sun Microsystems Laboratories
Burlington, MA

Anne.Anderson@sun.com

ABSTRACT
Four of the web service policy languages that have been proposed
as the basis for a new standard are based on Boolean
combinations of predicates. This paper discusses why these types
of policy languages are of interest to industry, proposes an
abstract layering for them, and compares the predicate forms
used by two of these languages.

General Terms
Standardization, Languages.

Keywords
web services, policy.

1. INTRODUCTION
At the W3C Workshop on Constraints and Capabilities for Web
Services [1], various proposals for a standard language for use in
expressing policies for web services were presented. Four of the
languages presented were variations on Boolean combinations of
predicates: the Web Services Policy Framework (WS-Policy) [2],
the Web Services Description Language (WSDL) [3] with the
addition of compositors [4], the XACML profile for web services
(WSPL) [5], and a language outline from IONA Technologies [6].
These languages differ in the predicates that are used. In WS-
Policy, the predicates are Assertions that return a Boolean result,
but are not otherwise defined in the policy framework itself;
Assertion definitions are to be provided as part of each domain-
specific document that defines items to be controlled by a policy.
In WSDL compositors, the predicates are WSDL Boolean
Features, Properties, or nested compositor (Boolean operator)
expressions; Features and Properties are not further defined,
although some semantic guidance is provided. In XACML
WSPL, the predicates are XACML [7] functions that return a
Boolean result and operate on Attributes and literal values, where
an Attribute may be a name/type/value triple or a node in an
XML document identified by an XPath [8] expression. In the
IONA outline, the predicates are simple XML elements, with at
most a Yes/No parameter; the process of defining the elements to
be used is not elaborated in the outline proposal.

All these languages must rely on some mechanism for associating
policies with services or service elements. WS-Policy relies on
Web Services Policy Attachment (WS-PolicyAttachment) [9].
WSDL relies on attachment points defined in WSDL itself.
WSPL relies on a specified convention for the use of the XACML
Target element. The IONA outline does not describe its
mechanism.

This paper will discuss why these languages are of interest to
industry, will propose an abstraction for the layering of
functionality involved in such languages, along with the

functions of each layer, and will compare the forms of two types
of predicates, discussing their advantages and disadvantages.

2. WEB SERVICE POLICIES
This section describes, from this author's industry point of view,
how “web service policy” has come to be defined by industry and
why these Boolean combination policy languages have been of
interest to industry.

The proponents of these Boolean policy languages view “web
service policy” as being focused primarily on those aspects of a
service required to establish a connection and a session such that
message exchanges can be initiated. This focus arises from the
fact that these aspects of policy are almost universal among web
services – they all need to establish mutually agreeable security
and reliable messaging parameters, for example, and standards
for such parameters already exist. The proponents recognize that
more complex languages may be required for some application-
specific policy negotiations, but before such negotiations can
occur, communication must usually be established. It may also
be necessary to identify candidate service providers from a large
pool, and thus highly efficient policy matching is a primary goal.
Access control (web and OS) and security parameter (IPSec)
policies with these same constraints have been in production use
for years, so the design of “web service policy” languages has
tended to grow out of those models.

A standard language for addressing basic web service
communication is urgently needed, so industry is looking for a
solution that can be standardized quickly. The W3C Workshop's
call for position papers included a basic test case that position
papers were supposed to address. Several of the Boolean
combination policy language proposals included concrete
solutions for this test case. Rightly or wrongly, the fact that none
of the semantic web language proposals addressed the specific
use case did not lessen some industry skepticism about whether
semantic web languages are ready for production use in this area.

3. POLICY USES AND PROCESSORS
In order to develop appropriate web service policy languages, it
is important to understand how web service policies will be used
and which components of a web services architecture will use
them.

One important use is simply for a service provider to publish its
policies. A service consumer can query the policies of a provider
instance and dynamically configure itself to those policies. The
policy processor in this case is the consumer service application
itself. In addition to processing the policy expression, the
consumer must implement any functionality necessary for
conforming to the policy. The consumer must understand the
semantics of the items controlled by the policy in order to
implement this functionality.

A second important use is for a service to verify that
communications and messages it receives conform to its own
policy. A service may have an internal policy that is more
complex or more complete than the policy it publishes publicly,

Copyright © 2005 Sun Microsystems, Inc. All rights reserved.
WWW 2005, May 10--14, 2005, Chiba, Japan.

but any communication would usually need to satisfy at least the
published policy. Verifying that a communication or message
conforms to a given policy does not require that the verifier
understand the semantics of the items controlled by the policy,
but only that the verifier know how to match communication or
message information against the policy.

A third important use is for determining a mutually agreeable
policy between a service consumer and a service provider. This
operation might be performed by a service broker that accepts
service registrations and client requests for services, and matches
consumers with providers where there is a mutually acceptable
policy. The entity that determines the mutually compatible
policy need not understand the semantics of the policy items, but
only that it can determine the intersection between two policies.

Policies can be used in other ways not directly involving
interactions between service providers and service consumers.
An example would be the use of a policy for describing the
values to be used in a particular deployment of a service. Such a
policy might specify which of various options supported by the
service are to be enabled, and with which values, in this
particular deployment. In this case, the service application is the
policy processor, and must understand the semantics of the policy
items.

4. POLICY LAYERS
Several functional layers can be identified for such policy
languages. The languages all require some underlying
“vocabulary” that defines the items to be controlled by a policy,
some mechanism for expressing predicates related to that
vocabulary, a mechanism for expressing Boolean combinations of
predicates, and a mechanism for associating the policy with a
service or service element. The following diagram illustrates this
layering, along with examples of where such layers are specified:

Table 1. Policy layers

Layer Specification examples

Vocabulary WS-Security, WS-Reliability

Predicate

WS-Security
Policy,
WS-

Reliability
Policy

XACML
functions undefined

Boolean
combination WS-Policy

XACML
Boolean
operators

WSDL
compositors

Association WS-Policy
Attachment

XACML
target WSDL

Additional functions can logically be assigned to these layers. 1)
An “or” of two predicates means that either predicate is
acceptable, but at the time communication is established, one of
the options must be selected. This suggests there should be a
mechanism for specifying preferences among “or”d predicates,
which would have to be specified at the Boolean combination
layer. 2) Likewise, a single predicate may indicate that a range
or set of values is acceptable for some item (e.g. “key length
must be at least 1024 bits”), yet one value must be selected at the
time communication is established. Preferences for these must
be specified at the predicate layer. 3) A policy consumer needs
to know the universe of items controlled by the policy and the
defaults for items not included in the policy: Must there be a
predicate for each item? Are unmentioned items prohibited or
unrestricted? This functionality belongs at the Boolean

combination layer. 4) Depending on how the defaults are
specified, the predicate layer may need to provide predicates to
indicate that a particular item is prohibited or is unrestricted. 5)
In order to match policies, there must be a way to tell which
predicates refer to the same underlying vocabulary item. 6) In
order to determine if two policies are consistent, there needs to
be a way to determine the set of values, if any, that satisfies each
of two different predicates over the same vocabulary item.

The major difference between these Boolean combination policy
languages is in the way the predicates themselves are defined.
The other layers are functionally equivalent, although the syntax
differences could affect the ease with which web service
specifications can be associated with policies. Since neither the
WSDL nor the IONA proposals describe their predicate layers in
detail, the remainder of this paper will focus on WS-Policy and
WSPL.

5. WS-POLICY
5.1 WS-Policy Overview
WS-Policy is a proprietary specification developed by a group of
companies that includes IBM, Microsoft, and BEA. As of the
writing of this paper, it has not been submitted to any standards
body.

WS-Policy defines two Boolean operators - <All> (Boolean
“and”) and <ExactlyOne> (exclusive-or) - that may be
applied to sequences of Assertion predicates. These operators
may be nested. Previous versions of WS-Policy included a
mechanism for providing hints about the policy writer's
preferences among various alternatives, but this mechanism was
omitted from the most recent version.

5.2 WS-Policy Predicate Layer
In WS-Policy, each web service specification must define a set of
policy Assertions to be used in expressing policy predicates
related to the vocabulary defined in the specification. For
example, if the underlying vocabulary specification defines an
XML schema element <v:A> that is to be controlled by web
service policies, then there must one or more additional elements
defined for use in expressing the policy predicates relating to
<v:A>.

WS-SecurityPolicy [10], which defines the Assertion predicates
to be used with the WS-Security [11] vocabulary, is the example
used in the WS-Policy specification. Each new domain's
vocabulary will require its own set of Assertion predicates,
although the WS-Policy authors suggest that in the future, such
Assertions will be defined as part of the underlying vocabulary
specification – WS-Security and WS-Reliability are examples of
legacy specifications for which external Assertions must be
defined.

In comparing policies, conceptually each policy is first converted
to Disjunctive Normal Form, such that the policies become
sequences of acceptable alternative sets of Assertions. The
intersection of two policies includes the “compatible policy
alternatives (if any) included in both requester and provider
policies. Intersection is a commutative, associative function that
takes two policies and returns a policy.” If the intersection is
empty, the two policies are incompatible. A set of Assertions in
one policy is compatible with a set of Assertions in another
policy if each instance of an Assertion type in one policy is
compatible with each instance of that Assertion type in the other
policy. If an instance of a given Assertion occurs in only one set,
then “the behavior associated with that Assertion type is

prohibited in the intersection of those policies”, although this
interpretation does not seem semantically consistent: if one
policy requires encryption, and the other says nothing about
encryption, then prohibiting encryption is not compatible with the
first policy.

5.3 WS-Policy Predicate Processing
The specification that defines Assertion <vp:A ...> must
Whether two instances of a given Assertion type are compatible
is determined by the semantics defined in the domain-specific
Assertion specification. The WS-Policy authors intend to provide
guidance to Assertion developers on how to write Assertions that
can be compared easily [12].

An Assertion may be a complex XML type. For example:
<vp:A attrB=”...” attrC=”...”>
 <vp:D>example1</vp:D>
 <vp:E>25</vp:E>
 <vp:F attrG=”...” />
</vp:/A>

The specification that defines Assertion <vp:A ...> must
define all possible variations of this element that a service
consumer might request, what the intersection of any two
instances of this Assertion is, which combinations are not
allowed, and how the various forms of the Assertion relate to
acceptable instances of the underlying domain-specific
vocabulary that is the subject of the policy. Any policy processor
that must verify a message against or compare instances of
<vp:A ...> must incorporate a code module that implements
the semantics specified for <vp:A ...>.

6. WSPL
6.1 WSPL Overview
The syntax of WSPL is a strict subset of the OASIS eXtensible
Access Control Markup Language (XACML) Standard.
Additional semantics have been specified in the WSPL
specification. A WSPL prototype has been implemented.

A WSPL policy is a sequence of one or more rules, where each
rule represents an acceptable alternative. A rule is a sequence of
predicates, all of which must be satisfied in order for the rule to
be satisfied. Rules are listed in order of preference, with the
most preferred choice listed first. A WSPL policy is in
Disjunctive Normal Form, where the rules are logically
connected with “OR” and the predicates within each rule are
connected with “AND”.

A more complete description of WSPL is contained in [13].

6.2 WSPL Predicate Layer
WSPL defines a standard language for use in specifying
predicates that constrain domain-specified vocabulary items.
WSPL predicates are XACML functions that return Boolean
values. The parameters to the functions are XACML Attributes
and literal values. An Attribute corresponds to a domain-defined
vocabulary item. Attributes are referenced in two ways,
depending on how the domain defines them. An
AttributeDesignator references a vocabulary item using a
domain-defined URI and a standard data type. An
AttributeSelector specifies a vocabulary item using an XPath
expression that selects the vocabulary item from a domain-
defined XML document. This document is usually an instance of
the schema that defines the domain vocabulary.

Each WSPL predicate places a constraint on the value of an
Attribute. The constraint operators are: equals, greater than,
greater than or equal to, less than, less than or equal to, set-
equals, and subset. All the comparison operators are strongly
typed and must agree with the data types specified for the
function parameters. WSPL supports the rich set of data types
used in XACML: string, integer, floating point number (double),
date, time, Boolean, URI, hexBinary, base64Binary,
dayTimeDuration, yearMonthDuration, x500Name, and
rfc822Name. These data types are all taken from the XML
Schema [14], with the exception of the two duration types taken
from XQuery Operators [15], and the two name types taken from
XACML.

6.3 WSPL Predicate Processing
In order to find the intersection of two WSPL policies, several
steps are performed. First, the targets of the two policies must
match (Targets are described more completely in [13]). If the
targets do not match, then the two policies are not compatible.
Second, a new policy is created in which there is one rule for
each pair of rules from the original policies, where the new rule
contains all the predicates from the two original rules. For any
given set of vocabulary item values, this new policy will return
“true” if and only if both original policies would return true,
since the new policy retains all the constraints from the two
original policies. WSPL rules are listed in order of preference in
a policy: if one rule precedes another, then the policy owner
prefers the combination of vocabulary item values specified by
the first rule to the combination specified by the second rule. By
default the entity that performs a policy intersection preserves
the preferences of one policy completely, and the preferences of
the second policy to the extent that those are consistent with the
preferences of the first. More complex preference combining
algorithms could be used, but there is always the possibility of
preference conflicts, and the combining algorithm must have
some mechanism for resolving these.

The next step is to merge the predicates in each of these new
rules such that, for each vocabulary item referenced in the new
rule, there is a single predicate (or two predicates in the case of a
range of vocabulary item values bounded at each end) that will
be true if and only if all predicates in the rule that reference that
vocabulary item are true. WSPL specifies the computation of
such predicates, based on the laws of arithmetic and logic, for
every function operator and data type. For example, the two
predicates “Attribute A > Value B” and “Attribute
A = Value C” are both true if and only if “Value B >
Value C” and “Attribute A = Value C”. If “Value
B” is not greater than “Value C”, then the two predicates are
incompatible, and thus the new rule can never be true and is
eliminated from the new policy. After this step, each remaining
rule is internally consistent: there are no conflicting predicates
over the same vocabulary item. The two original policies are
incompatible if and only if this resulting set of rules is empty.

The intersection of any two policies specified using the WSPL
predicate language can be computed. Computing this
intersection requires no knowledge of the semantics of the
referenced domain-specific vocabulary items, but depends only
on the semantics of the set of standard functions and data types.
The resulting policy is in a form such that a policy user can select
any rule, select values for each vocabulary item consistent with
the predicates in that rule, and that resulting set of values will be
acceptable to both original policies.

7. COMPARISON OF PREDICATE FORMS
Both these styles of predicate specification have their advantages
and disadvantages.

A single WS-Policy predicate can control multiple related items
in the underlying vocabulary; each WSPL predicate applies to
only one item. We have designed an extension to WSPL,
however, that allows predicates pertaining to related items to be
grouped.

A WS-Policy predicate can be abstract. For example, one
Assertion can state that a digital signature is required, without
specifying any details about the syntax of that signature. This
same Assertion could be used with multiple digital signature
syntaxes. A WSPL predicate on the other hand, if it uses XPath
expressions to reference actual nodes in an instance of the the
underlying vocabulary schema, must depend on an actual node
value that will be present in particular schema instances. This
can make policies complex if there are multiple ways a particular
requirement could be met in a schema instance (for example,
there are multiple ways to reference an object to be signed in a
message when using the XML Digital Signature standard).
XACML name/type/value Attributes can be defined, however, to
accomplish the same abstraction functions as WS-Policy
Assertions.

The WS-Policy Assertions that need to be compared between two
policies can be easily determined, because the Assertions will
usually have the same name; there might be cases where two
different Assertions might need to be compared, however, as
when a consumer asserts a “MaximumBuyingPrice” Assertion,
while a provider asserts a “MinimumSellingPrice” Assertion.
Comparable WSPL AttributeDesignators can always be matched,
because they must have the same name; similar “maximum” and
“minimum” semantics are captured in the function operator
rather than in the Attribute itself. If AttributeSelectors using
XPath expressions are used, however, there may be multiple
expressions that point to the same node in a schema instance.
We are trying to define a subset of XPath that uniquely identifies
each node to deal with this problem.

A WS-Policy Assertion can specify requirements on document
creation, such as the requirement that information describing
each document processing step be prepended to previous step
information, thus allowing the steps to be “undone” in order by
the message receiver. An XACML Attribute could be defined to
express such semantics, but it can not be done with XPath
expressions, since there is nothing in the document that indicates
the order in which nodes were added. Note that this type of
predicate can not be verified against a given message; it must
simply be asserted as a requirement on a document processor.

In order to use a WS-Policy Assertion for message verification,
the verification engine must include special code that knows how
to relate that Assertion to a particular type of message. A WSPL
predicate that uses XPath expressions can be used directly to
verify that the predicate is satisfied in a message.

WS-Policy Assertions may be defined in proprietary
specifications. Even if the specification is eventually
standardized, there can be a long period during which the
specification is under development and is not available to all
implementers of policy processors. Particularly for policies
related to application-specific vocabularies, there may be limited
incentive to rush the policy specification to standardization.
WSPL predicates, however, can refer directly to the underlying

vocabulary specification, and the semantics of those predicates
are standard and do not depend on the underlying specification.
Alternatively, an XSLT can be used to translate information
from an instance of a proprietary schema into a non-proprietary
format such as XACML Attributes for use in specifying policies.

The Boolean operators defined in WS-Policy can be nested,
resulting in a compact policy format; in order to process a policy,
it must be at least nominally converted to Disjunctive Normal
Form. In WSPL, the policies are always in Disjunctive Normal
Form. This, along with the fact that functions are used to specify
semantics, rather than having the semantics be implicit in the
predicate itself, means that a given policy expressed in WSPL
will almost always require more bytes for its expression than a
corresponding WS-Policy policy.

From this author's industry perspective, the most significant
difference between WS-Policy Assertions and WSPL predicates
is that each Assertion has unique domain-defined semantics that
must be captured in a code module incorporated into any entity
that must process the Assertion, either to compare it or to verify
it. Each new domain-defined set of Assertions requires that
policy processors be updated to support those; any change to
existing Assertions likewise requires processor updates. Any
processor that has not been updated will not be able to process
new or modified Assertions, making it less likely that policies
will be interoperable between different platforms. As more and
more Assertions are defined, the footprint and maintenance
complexity of each policy processor increases. WSPL predicates,
on the other hand, use a finite, standard set of functions that do
not depend on domain-defined semantics. Any WSPL processor
can process any WSPL policy, new or old, and regardless of
whether the underlying vocabulary is defined in a proprietary
specification or not.

As a proof-of-concept, this author has translated all the
Assertions defined in WS-SecurityPolicy into WSPL. This
exercise was successful in demonstrating that WSPL can handle
the policy semantics of a real-life domain.

8. SUMMARY
The web service policy languages that use Boolean combinations
of predicates differ primarily in the forms those predicates take.
In WS-Policy, predicates are XML elements whose syntax and
semantics are domain-specific, with each policy item or group of
items having its own set of predicates. In WSPL, predicates are
standard XACML functions over a reference to a policy
vocabulary item and a literal value. Both forms have advantages
and disadvantages. The primary advantage of the WS-Policy
form is that predicates tend to be compact and easy to read. The
primary disadvantage is that policy processors must be
configured to support the syntax and semantics of each predicate
type that will be used by any policy. The primary advantage of
the WSPL form is that a standard policy processor is able both to
compute the intersection of any two policies and to verify any
message against a policy. The primary disadvantage is that
predicates that directly reference nodes in a domain schema
instance may be overly specific, although WSPL also supports
the creation of new vocabulary items to express more abstract
requirements. WS-Policy currently has no preference
mechanism, and the semantics of missing predicates appears to
be incorrect; WSPL allows policy alternatives to be ordered by
preference. WSPL needs an XPath subset that can be used to
uniquely identify a policy item.

9. REFERENCES
[1] W3C, W3C Workshop on Constraints and Capabilities for

Web Services, http:// www.w3.org /2004/09/ws-cc-program .,
12-13 October 2004.

[2] J. Schlimmer, ed., Web Services Policy Framework (WS-
Policy),
http:// msdn.microsoft.com /library/ default.asp ? url =/library/e
n-us/ dnglobspec / html /ws- policy.asp , September 2004.

[3] W3C, Web Services Description Language (WSDL) 1.1,
W3C Note, http://www.w3.org/TR /wsdl , 15 March 2001.

[4] U. Yalcinalp, Proposal for adding Compositors to WSDL
2.0, http:// lists.w3.org /Archives/Public/ www -ws-
desc /2004Jan/0153.html , 26 January 2004.

[5] T. Moses, ed., XACML profile for Web-services,
http://www.oasis-open.org/committees/download.php/3661/
draft-xacml-wspl-04.pdf, Working draft 04, 29 Sept 2003
(also known as “Web Services Policy Language (WSPL)”).

[7] T. Moses, eds., OASIS eXtensible Access Control Markup
Language (XACML), OASIS Standard 2.0,
http:// www.oasis - open.org /committees/xacml , 1 February
2005.

[8] W3C, XML Path Language (XPath), Version 1.0, W3C
Recommendation, http://www.w3.org/TR/ xpath , 16 Novem-
ber 1999.

[9] C. Sharp, ed., Web Services Policy Attachment (WS-
PolicyAttachment),
http://msdn.microsoft.com/library/default.asp?url=/library/e
n-us/dnglobspec/html/ws-policy.asp, September 2004.

[10] A. Nadalin, ed., Web Services Security Policy Language
(WS-SecurityPolicy), Version 1.0,
http://msdn.microsoft.com/ webservices / default.aspx ?pull=/li
brary/en-us/dnglobspec/html/ws- securitypolicy.asp , 18
December 2002.

[11] A. Nadalin, et al, eds., WS-Security, OASIS Standard 1.0,
http://www.oasis-
open.org/committees/tc_ home.php ? wg _abbrev= wss , 6 April
2004.

[12] J. Schlimmer, personal communication, 12 October 2004.
[13] A. Anderson, An Introduction to the Web Services Policy

Language (WSPL), Proceedings of the Fifth IEEE
International Workshop on Policies for Distributed Systems
and Networks, Yorktown Heights, New York, 7-9 June
2004, pp. 189-192.

[14] W3C, XML Schema Part 2: Datatypes, W3C
Recommendation, http://www.w3.org/TR/ xmlschema -2/ , 2
May 2001.

[15] W3C, XQuery 1.0 and XPath 2.0 Functions and Operators,
W3C Working Draft 2002,
http://www.w3.org/TR/2002/WD- xquery -operators-
20020816, 16 August 2002.

